Home
Class 11
MATHS
Prove that (1 + sqrt3i)^n + (1 - sqrt3i)...

Prove that `(1 + sqrt3i)^n + (1 - sqrt3i)^n = 2^(n+1) cos ((npi)/3)` for any positive integer n

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |106 Videos
  • CONIC SECTION

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|90 Videos

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that d/(d x)(x^n)=n x^(n-1) for all positive integers n .

If A_(alpha)=[[cos alpha, sin alpha],[ -sin alpha , cos alpha]] , then prove that i) A_(alpha ). A_(beta)=A_(alpha + beta) ii) (A_alpha)^n=[[cos n alpha, sin n alpha],[ -sin n alpha, cos n alpha]] for every positive integer n .

If ((1+isqrt3)/(1-isqrt3))^(n) is an integer, then n is

if A=[[3, -4],[ 1, (-1)]] , then prove that A^n=[[1+2 n, -4 n ],[n , 1-2n]] where n is any positive integer.

Which one of the following is true? a) (1+(1)/(n))^(n)ltn^(2),n is a positive integer b) (1+(1)/(n))^(n)lt2,n is a positive integer c) (1+(1)/(n))^(n)ltn^(3),n is a positive integer d) (1+(1)/(n))^(n)ge2,n is a positive integer

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n

(a)Prove that 3^(2n)-1 is divisible by 8.

If alpha and beta are the roots of x^2 - 2x + 4 = 0 , Prove that alpha^n+beta^n = 2^(n+1) cos((npi)/3)

Prove that 1(1) !+2(2) !+3(3) !+............ .+n(n) ! = (n+1) !-1

Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx