Home
Class 11
MATHS
prove that (-1 + i)^2 = -2i...

prove that `(-1 + i)^2 = -2i`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |106 Videos
  • CONIC SECTION

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|90 Videos

Similar Questions

Explore conceptually related problems

Prove that (1 + i)^4 = -4

If x=(1+i)/sqrt2 , prove that x^2 = i

Prove that (1 + sqrt3i)^n + (1 - sqrt3i)^n = 2^(n+1) cos ((npi)/3) for any positive integer n

In case of refraction through a prism, prove that delta = i_1 + i_2 - A

If (a+i)^2/(2a-i) = p+iq , prove that p^2+q^2 = (a^2+1)^2/(4a^2+1)

If A=[[1, 0, 2],[ 0, 2, 1],[ 2, 0, 3]] , prove that A^3-6 A^2+7 A+2I=0

Using the value of i^2 , prove that 1/i=-i

Prove that abs((a+i)^2/(2a-i)) = (a^2+1)/(sqrt(4a^2+1))

Prove that abs((1+i)/(1-i)) = 1