Home
Class 11
MATHS
Given that ""^nCr=(n!)/(n!(n-r)!) if ""...

Given that `""^nC_r=(n!)/(n!(n-r)!)` if `""^28C_(2r): ^24C_(2r-4)=225:11` prove that r = 7

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    A N EXCEL PUBLICATION|Exercise QUESTION PAPER|45 Videos
  • PRINCIPLE OF MATHEMATICL INDUCTION

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|40 Videos

Similar Questions

Explore conceptually related problems

Given that ^nC_r=(n!)/(r!(n-r)!) What are the values of ^28C_(2r) and ^24C_(2r-4)

Prove that nC_r = nC_(n-r)

Prove that ^"" nC_r=^nC_(n-r)

Prove that (""^nP_r)/(""^nC_r)=r!

If ^28p_r=6^28C_r , prove that r = 3

Prove that ""^(n+1)C_(r+1)=(n+1)/(r+1)"^nC_r

Prove that (""^nC_r)/(""^nC_(r-1))=(n-r+1)/r

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Given that ""^nC_r="^nC_(n-r) or C_r=C_(n-r) Prove that aC_0+(a+b)C_1+...+(a+nb)C_n=(2a+nb)2^(n-1) Hence, prove that C_0+4C_1+7C_2+...+(3n+1)C_n=(3n+2)2^(n-1)

Given that ""^nC_r="^nC_(n-r) or C_r=C_(n-r) Prove that aC_0+(a+b)C_1+...+(a+nb)C_n=(2a+nb)2^(n-1) Hence, prove that C_0+5C_1+9C_2+...+(4n+1)C_n=(4n+2)2^(n-1)