Home
Class 11
MATHS
If C0,C1,C2...Cn denote the coefficients...

If `C_0,C_1,C_2...C_n` denote the coefficients in the binomial expansion of `(1+x)^n,` prove that `C_0+3C_1+5C_2+...+(2n+1)C_n=(n+1)2^n`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|160 Videos

Similar Questions

Explore conceptually related problems

What is the coefficient of x^(n-2) in the expansion of (1+x)^(2n) ?

Prove that C_0+C_2/3+C_4/5+...=(2^n)/(n+1)

Prove that C_0C_2+C_1C_3+…+C_(n-2)C_n=^(2n)C_(n-2)

Prove that 2C_0+C_1+2C_2+C_3+2C_4+...=3.2^(n-1)

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Given that C_0+C_1x+C_2x^2+..+C_nx^n=(1+x)^n prove that C_0+5.C_1+5^2.C_2+...+5^n.C_n=6^n

Prove that the coefficient of x^n in the expansion of (1+x)^(2n) is twice the coefficient of x^n in the expansion of (1+x)^(2n-1)

Let c_r denote the binomial coefficient "^nC_r Hence, show that C_1/C_0+2C_2/C_1+3.C_3/C_2+...+n.C_n/C_(n-1)=(n(n+1))/2