Home
Class 11
MATHS
prove the result ^(n+1)Cr=^nC(r-1)+^nCr...

prove the result `^(n+1)C_r=^nC_(r-1)+^nC_r`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|160 Videos

Similar Questions

Explore conceptually related problems

^nC_(n-1) =….

Prove that ""^(n+1)C_(r+1)=(n+1)/(r+1)"^nC_r

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Prove that ""^nC_r+4^nC_(r-1)+6^(n)C_(r-2)+4^nC_(r-3)+^nC_(r-4)=^(n+4)C_r

Prove that ^"" nC_r=^nC_(n-r)

Prove that (""^nC_r)/(""^nC_(r-1))=(n-r+1)/r

Prove that nC_r = nC_(n-r)

If ^nC_10=^nC_12 find ^23C_n

Prove that (""^nP_r)/(""^nC_r)=r!