Home
Class 12
MATHS
Using properties, prove that |[1,omega,...

Using properties, prove that
`|[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]|=0`where `omega`is a complex cube root of unity.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |158 Videos
  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos

Similar Questions

Explore conceptually related problems

Without expanding at any stage, prove that the value of the following determinant is zero. |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| , where omega is cube root of unity

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

The value of |(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3)),(3,3omega^(3),6omega^(4))| is equal to (where omega is imaginary cube root of unity

The value of (2 - omega) (2- omega ^(2)) (2-omega^(10)) (2- omega ^(11)) where omega is the complex cube root of unity, is : a)49 b)50 c)48 d)47

The value of the expression 1.(2- omega)(2- omega^(2)) + 2.(3-omega) (3-omega^(2)) + …+ (n-1)(n- omega)(n- omega^(2)) , where omega is an imaginary cube root of unity is

IF 1, omega , omega^2 are the cube roots of unity and if [{:(1+omega,2 omega),(-2 omega,-b):}]+[{:(a,-omega),(3 omega,2):}]=[{:(0, omega),(omega,1):}] then a^2+b^2 is equal to

If omega ne 1 and omega^3=1 then (a omega+b+c omega^2)/(a omega^2+b omega+c)+(a omega^2+b+c omega)/(a+b omega+ c omega^2) is equal to a)2 b) omega c) 2 omega d) 2 omega^2

If x= a+ b, y = a omega + b omega^(2), z= a omega^(2) + b omega , then the value of x^(3) + y^(3) + z^(3) is equal to (where omega is imaginary cube root of unity)

If a, b, c are integers, no two of them being equal and omega is complex cube root of unity, then minimum value of |a+b omega| + c omega^(2)| is

A N EXCEL PUBLICATION-DETERMINANTS-QUESTION TYPE
  1. Using properties of determinants prove the following. abs[[b+c,a,...

    Text Solution

    |

  2. Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,...

    Text Solution

    |

  3. Using properties, prove that |[1,omega,omega^2],[omega,omega^2,1],[om...

    Text Solution

    |

  4. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  5. Using properties of determinants show that abs[[1+a,1,1],[1,1+b,1]...

    Text Solution

    |

  6. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| On taking 2 ...

    Text Solution

    |

  7. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| Evaluate De...

    Text Solution

    |

  8. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  9. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  10. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 OperatingC1...

    Text Solution

    |

  11. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 Solve the ...

    Text Solution

    |

  12. Without expanding the determinant prove the following. |[x,a,x+a],[y...

    Text Solution

    |

  13. Without expanding the determinant prove the following. |[2,7,65],[3,...

    Text Solution

    |

  14. Without expanding the determinant prove the following. |[b+c,q+r,y+z...

    Text Solution

    |

  15. Without expanding the determinant prove the following. |[1,bc,a(b+c)...

    Text Solution

    |

  16. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  17. By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],...

    Text Solution

    |

  18. By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^...

    Text Solution

    |

  19. using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],...

    Text Solution

    |

  20. Using properties of determinants prove the following. abs[[1,1,1],...

    Text Solution

    |