Home
Class 12
MATHS
Using the property of determinants,show ...

Using the property of determinants,show
that the points `A(a,b+c),B(b,c+a),
C(c,a+b)` are collinear.

Text Solution

Verified by Experts

`|[x_1, y_1,1],[x_2, y_2,1],[x_3, y_3,1]|=|[a, b+c,1],[b, c+a,1],[c, a+b,1]|`
`=|[a+b+c, b+c,1],[a+b+c, c+a,1],[a+b+c, a+b,1]|`
(by `C_1rarrC_1+C_2)`
`=(a+b+c)|[1, b+c,1],[1, c+a,1],[1, a+b,1]|=0`
`(because C_1=C_3)`
Thus, the given points are collinear.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |158 Videos
  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos

Similar Questions

Explore conceptually related problems

Show that the points A(1,2,7),B(2,6,3) "and" C(3,10,-1) are collinear.

Using vectors, show that the points A(1,2,7),B(2,6,3),C(3,10,-1) are collinear.

Show that the points 'A(2,3,-4), B(1,-2 , 3)' and 'C(3,8,-11)' are collinear

The area of the triangle formed by the points (a,b+c),(b,c+a),(c,a+b) is

Using section formula, show that the points A (2,-3,4), B(-1,2,1) and C (0, 1/3 ,2) are collinear.

Using section formula, show that the points A(2,-3,4) , B(-1,2,1) and C(0,1/3, 2) are collinear

|(1,a,b+c),(1,b,c+a),(1,c,a+b)| =

Consider the points A(-2,3,5) , B(1,2,3) and C(7,0,-1) Using the distance formula,show that the points A,B and C are collinear.

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

A N EXCEL PUBLICATION-DETERMINANTS-QUESTION TYPE
  1. Using the property of determinants,show that the points A(a,b+c),B(b...

    Text Solution

    |

  2. Evaluate |[102,18,36],[1,3,4],[17,3,6]|

    Text Solution

    |

  3. Evaluate |[1,1,1],[a,b,c],[b+c,c+a,a+b]|

    Text Solution

    |

  4. prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

    Text Solution

    |

  5. Using properties of determinants prove the following. abs[[b+c,a,...

    Text Solution

    |

  6. Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,...

    Text Solution

    |

  7. Using properties, prove that |[1,omega,omega^2],[omega,omega^2,1],[om...

    Text Solution

    |

  8. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  9. Using properties of determinants show that abs[[1+a,1,1],[1,1+b,1]...

    Text Solution

    |

  10. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| On taking 2 ...

    Text Solution

    |

  11. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| Evaluate De...

    Text Solution

    |

  12. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  13. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  14. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 OperatingC1...

    Text Solution

    |

  15. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 Solve the ...

    Text Solution

    |

  16. Without expanding the determinant prove the following. |[x,a,x+a],[y...

    Text Solution

    |

  17. Without expanding the determinant prove the following. |[2,7,65],[3,...

    Text Solution

    |

  18. Without expanding the determinant prove the following. |[b+c,q+r,y+z...

    Text Solution

    |

  19. Without expanding the determinant prove the following. |[1,bc,a(b+c)...

    Text Solution

    |

  20. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  21. By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],...

    Text Solution

    |