Home
Class 12
MATHS
If a,b,c are real numbers and abs[[b+c,...

If a,b,c are real numbers and `abs[[b+c,c+a,a+b],[c+a,a+b,b+c],[a+b,b+c,c+a]]=0`,show that a=b=c

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |158 Videos
  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos

Similar Questions

Explore conceptually related problems

S.T abs[[x+a,b,c],[a,x+b,c],[a,b,x+c]]=x^2(x+a+b+c)

prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0

If b ne c and |[a , a^2, 1+a^3],[ b, b^2, 1+b^3],[ c, c^2, 1+ c^3]| =0 then prove that a b c =-1

Prove that abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3

Show that abs [[1,a,bc],[1,b,ac],[1,c,ab]]=(a-b)(b-c)(c-a)

Evaluate |[1,1,1],[a,b,c],[b+c,c+a,a+b]|

Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

If a, b, c, are in A. P, and (b−a), (c−b), a are in G.P, then a : b : c is

Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

A N EXCEL PUBLICATION-DETERMINANTS-QUESTION TYPE
  1. Solve the following system of linear equations using matrix method. 2x...

    Text Solution

    |

  2. Solve the following system of linear equations using matrix method. x-...

    Text Solution

    |

  3. If A=[[2,-3,5],[3,2,-4],[1,1,-2]]find A^(-1)Using A^(-1)solve the syst...

    Text Solution

    |

  4. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs.60.The cost of ...

    Text Solution

    |

  5. Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is...

    Text Solution

    |

  6. Without expanding the determinant, Prove that |[a,a^2, bc],[b,b^2,ca...

    Text Solution

    |

  7. Evaluate|[cosalpha cosbeta,cosalpha sinbeta,-sinalpha],[-sinbeta,cosbe...

    Text Solution

    |

  8. If a,b,c are real numbers and abs[[b+c,c+a,a+b],[c+a,a+b,b+c],[a+b,b+...

    Text Solution

    |

  9. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]|=0, a ne0

    Text Solution

    |

  10. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  11. If A^(-1)=[[3,-1,1],[-15,6,-5],[5,-2,2]] and B=[[1,2,-2],[-1,3,0],[0,-...

    Text Solution

    |

  12. Let A=[[1,-2,1],[-2,3,1],[1,1,5]] verify that (A^(-1))^(-1)=A

    Text Solution

    |

  13. Let A=[[1,-2,1],[-2,3,1],[1,1,5]] verify that (A^(-1))^(-1)=A

    Text Solution

    |

  14. Using properties of determinants prove abs[[x,y,x+y],[y,x+y,x],[x+y,...

    Text Solution

    |

  15. evaluate | [1,x,y],[1,x+y,y],[1,x,x+y] |

    Text Solution

    |

  16. Using properties of determinants, prove that |[alpha, alpha^2, beta+g...

    Text Solution

    |

  17. Given Delta=|(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3)| Prove that ...

    Text Solution

    |

  18. Consider a system of linear equations which is given below, 2/x+3/y+10...

    Text Solution

    |

  19. If a,b,c are in A.P., then the determinant |[x+2, x+3, x+2a],[x+3,x+...

    Text Solution

    |

  20. If x,y,z are non-zero real numbers, then the inverse of A=[[x,0,0],[0,...

    Text Solution

    |