Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that
`|[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]|` = 0

Text Solution

Verified by Experts

Then split determinant into 2, using property 5.
Take `cos delta` from `1^(st)` determinant and `sin delta` from `II^(nd)` as common factor.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |158 Videos
  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |[alpha, alpha^2, beta+gamma],[beta,beta^2,gamma+alpha],[gamma,gamma^2,alpha+beta]|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

If Delta=|(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))| then Delta is independent of a) delta only b) alpha, beta, gamma only c) alpha,beta,gamma,delta d)None of these

Evaluate Delta=|[0, sin alpha, -cos alpha],[ -sin alpha, 0 , sin beta],[ cos alpha, -sin beta, 0]|

If alpha , beta , lambda are three real numbers and A=[(1,cos(alpha-beta),cos(alpha-gamma)),(cos(beta-alpha),1,cos(beta-gamma)),(cos(gamma-alpha),cos(gamma-beta),1)] , then which of following is not true A)A is singular B)A is symmetric C)A is orthogonal D)A is not invertible

Evaluate |[cos alpha cos beta, cos alpha sin beta, -sin alpha],[ -sin beta, cos beta, 0],[ sin alpha cos beta, sin alpha sin beta, cos alpha]|

A line makes acute angles of alpha, beta and gamma with the co-ordinae axes such that cos alpha cos beta = cos beta cos gamma = (2)/(9) and cos gamma cos alpha = (4)/(9), then cos alpha + cos beta + cos gamma is equal to : a) (25)/(9) b) (5)/(9) c) (5)/(3) d) (2)/(3)

|(1,cosalpha,cosbeta),(cosalpha,1,cosgamma),(cosbeta,cosgamma,1)|=|(0,cosalpha,cosbeta),(cosalpha,0,cosgamma),(cosbeta,cosgamma,0)|" if " cos^(2)alpha+cos^(2)beta+cos^(2)gamma= a)1 b)2 c) 3//2 d) 1//2

A N EXCEL PUBLICATION-DETERMINANTS-QUESTION TYPE
  1. Using properties of determinants, prove that |[sinalpha,cosalpha,cos...

    Text Solution

    |

  2. Evaluate |[102,18,36],[1,3,4],[17,3,6]|

    Text Solution

    |

  3. Evaluate |[1,1,1],[a,b,c],[b+c,c+a,a+b]|

    Text Solution

    |

  4. prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

    Text Solution

    |

  5. Using properties of determinants prove the following. abs[[b+c,a,...

    Text Solution

    |

  6. Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,...

    Text Solution

    |

  7. Using properties, prove that |[1,omega,omega^2],[omega,omega^2,1],[om...

    Text Solution

    |

  8. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  9. Using properties of determinants show that abs[[1+a,1,1],[1,1+b,1]...

    Text Solution

    |

  10. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| On taking 2 ...

    Text Solution

    |

  11. Consider the determinant D=|[1,3,5],[2,6,10],[31,11,38]| Evaluate De...

    Text Solution

    |

  12. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  13. Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-b...

    Text Solution

    |

  14. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 OperatingC1...

    Text Solution

    |

  15. Consider the equation |[3x-8,3,3],[3,3x-8,3],[3,3,3x-8]|=0 Solve the ...

    Text Solution

    |

  16. Without expanding the determinant prove the following. |[x,a,x+a],[y...

    Text Solution

    |

  17. Without expanding the determinant prove the following. |[2,7,65],[3,...

    Text Solution

    |

  18. Without expanding the determinant prove the following. |[b+c,q+r,y+z...

    Text Solution

    |

  19. Without expanding the determinant prove the following. |[1,bc,a(b+c)...

    Text Solution

    |

  20. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  21. By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],...

    Text Solution

    |