Home
Class 12
MATHS
If siny=xsin(a+y), prove that (dy)/(dx)...

If `siny=xsin(a+y),` prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

Text Solution

Verified by Experts

`(dy)/(dx)=(sina)/(sin^2(a+y))therefore(dy)/(dx)=1/(((dx)/(dy)))=(sin^2(a+y))/(sina)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|47 Videos
  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos

Similar Questions

Explore conceptually related problems

If cos y=x cos (a+y) prove that (dy/dx)=(cos ^2(a+y))/sina

If sin y= x sin (a+y) , then (dy)/(dx) is :

Find (dy)/(dx)y=2^(sin^2x)

If y=sin 2x , Prove that dy/dx=2cos2x

If y=5 cos x-3 sin x , prove that (d^2y)/(dx^2)+y=0

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If y^x=e^(y-x), prove that dy/dx=(1+logy)^2/logy .

x (dy)/(dx)-y+x sin (y/x)=0

If xsqrt(1+y)=sqrtx , prove that dy/dx= -1/(x^2)