Home
Class 12
MATHS
Consider the function f(x)=sin^(-1)(2xsq...

Consider the function `f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2`
Find f'(x)`.

Text Solution

Verified by Experts

`y=sin^-1(2xsqrt(1-x^2)=2sin^-1xtherefore(dy)/(dx)=2xx1/sqrt(1-x^2)=2/sqrt(1-x^2)sin^-1(2xsqrt(1-x^2)=2sin^-1x`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|47 Videos
  • DETERMINANTS

    A N EXCEL PUBLICATION|Exercise QUESTION TYPE|83 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Show that f(x)=2sin^-1x

Find dy/dx of y=sin^-1 2xsqrt(1-x^2) (-1)/sqrt2 < x <1/sqrt2

Find the domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

Find the range f(x) = tan^(-1)(sqrt(x^2-2x+2))

Consider the function f(x)=frac(x+1)(x-1),xne1 fof(2) =__

Integrate the following functions: sin^-1x/(sqrt(1-x^2)

If f(x)=sin^(-1){sqrt3/2x-1/2sqrt(1-x^2)},-1/2lexle1 , then f(x) is equal to

Evaluate sin^(-1)((x+sqrt(1-x^2))/(sqrt2)) , where -1/sqrt2ltxlt1/sqrt2

x=1/(sqrt2+1) Find x+1/x