Home
Class 12
MATHS
Integrate the following functions (e^(2x...

Integrate the following functions `(e^(2x) - 1)/(e^(2x) +1`

Text Solution

Verified by Experts

`(e^(2x)-1)/(e^(2x)+1) = (e^x(e^x-e^-x))/(e^x(e^x-e^+x)) = (e^x-e^-x)/(e^x+e^-x)`
Let `t = e^x+e^-x`. Then
dt = `(e^x-e^-x) dx`
therefore `int (e^(2x) -1)/(e^(2x)+1) dx = int(e^x-e^-x)/e^x+e^-x)dx`
`int (dt)/t = log |t|+c`
= `log|e^x+e^-x|+c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|22 Videos

Similar Questions

Explore conceptually related problems

Integrate the following functions e^(2x+3)

Integrate the following functions e^(2x) sinx

Integrate the following functions x/e^(x^2)

Integrate the following functions x^2e^x

Integrate the following functions x sec^2x

Integrate the follwing functions: 1/(e^x -1)

Integrate the following functions (e^(2x) -e^(-2x))/(e^(2x) + e^(-2x)

Integrate the following functions e^x(1/x - 1/x^2)

Integrate the follwing functions: 1/(x^2-9)