Home
Class 12
MATHS
Evaluate the following definite integral...

Evaluate the following definite integrals `int_1^2 (1/x - 1/(2x^2)) e^(2x) dx`

Text Solution

Verified by Experts

`int_1^2(1/x -1/(2x^2)) e^(2x) dx`
=`int_1^2 1/x e^(2x) dx - int_1^2 1/(2x^2) e^(2x) dx`
`[1/x (e^(2x))/2]_1^2 - int_1^2 -1/x^2 e^(2x)/2 dx - int_1^2 1/(2x^2) e^(2x) dx`
=`1/2 [e^4/2 -e^2/1] = (e^4-2e^2)/4 = (e^2(e^2-2))/4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |134 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|22 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integrals int_-1^1 dx/(x^2+2x+5)

Evaluate the following definite integrals int_0^1 x/(x^2+1) dx

Evaluate the following definite integrals int_0^2dx/(x+4-x^2)

Evaluate the following definite integrals int_0^1 sin^-1((2x)/(1+x^2)) dx

Using properties evaluate the following definite integrals int_0^(pi/2) cos^2x dx

Evaluate the following integrals: int_2^3 1/x dx

Evaluate the following integrals int 1/(9x^2-1) dx

Evaluate the following integrals: int_2^3 (1/(x^2-1))dx

Evaluate the following integrals: int_-1^1 (x+1) dx

Evaluate the following integrals: int_0^1 dx/(1+x^2)