Home
Class 9
MATHS
Prove that If a=2, b=3, c=5. Then prov...

Prove that
If a=2, b=3, c=5. Then prove that
`2b^2c^2+2c^2a^2+2a^2b^2-a^4-b^4-c^4=0`

Promotional Banner

Topper's Solved these Questions

  • HARDER PRODUCT AND FACTORISATION

    KALYANI PUBLICATION|Exercise EXERCISE|148 Videos
  • GEOMETRY

    KALYANI PUBLICATION|Exercise EXERCISE|10 Videos
  • INEQUALITIES AND INEQUATIONS

    KALYANI PUBLICATION|Exercise EXERCISE|126 Videos

Similar Questions

Explore conceptually related problems

Proove that 2b^2c^2+2c^2a^2+2a^2b^2-a^4-b^4-c^4=(a+b+c)(b+a-c)(c+a-b)(a+b-c)

If a+b=c then prove that 1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)+1/(a^2+b^2-c^2)=0

If b+c-a=7, c+a-b=3, a+b-c=-10 then find the value 2b^2c^2+2a^2b^2+2c^2a^2-a^4-b^4-c^4

If a+b+c=0 , then prove that a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2

If a+b+c=0 , then prove that (a^2+b^2+c^2)^2=4 (a^2b^2+b^2c^2+c^2a^2)

If a+b+c=0 , then prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3

If a+b+c=0 , then prove that a^4+b^4+c^4=2(ab+bc+ca)^2

If a,b,c are in G.P then show that a(b^2-c^2)=c(a^2-b^2)

If a,b,c are in G.P then show that a(b^2+c^2)=c(a^2+b^2)

If a+b+c=0 , then prove that a(b+c)^2+b(c+a)^2+c(a+b)^2=3abc

KALYANI PUBLICATION-HARDER PRODUCT AND FACTORISATION -EXERCISE
  1. Prove that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

    Text Solution

    |

  2. if x+y+z=0,then Prove that (xyz)/((x+y)(y+z)(z+x))=-1 where(x!=-y,y!...

    Text Solution

    |

  3. Prove that If a=2, b=3, c=5. Then prove that 2b^2c^2+2c^2a^2+2a^2b...

    Text Solution

    |

  4. Prove that If 3x+2y=-1, then prove that 81x^4+16y^4+1-72x^2y^2-18x...

    Text Solution

    |

  5. If x-y=7and xy=9, then find the value of (x^2+y^2)

    Text Solution

    |

  6. Prove that 4x^2(y-z)+y^2(2x-z)+z^2(2x+y)-4xyz = (2x+y)(y-z)(2x-z)

    Text Solution

    |

  7. Prove that (x-a)^2/((a-b)(a-c))+(x-b)^2/((b-a)(b-c))+(x-c)^2/((c-a)(...

    Text Solution

    |

  8. Prove that 1/(a(a-b)(a-c))+1/(b(b-c)(b-a))+1/(c(c-a)(c-b))=1/(abc)

    Text Solution

    |

  9. Prove that a/(bc(a-b)(a-c))+b/(ca(b-c)(b-a))+c/(ab(c-a)(c-a))=1/(abc...

    Text Solution

    |

  10. Prove that 2(s-a)(s-b)(s-c)+a(s-b)(s-c)+b(s-c)(s-a)+c(s-a)(s-b)=abc ...

    Text Solution

    |

  11. Factorise a^3-b^3+1+3ab

    Text Solution

    |

  12. If a + b + c = 0, then prove that 1/(2a^2+bc)+1/(2b^2+ca)+1/(2c^2+a...

    Text Solution

    |

  13. If a^2 + b^2 + c^2 -ab-bc-ca = 0, then prove that a=b=c

    Text Solution

    |

  14. If a + b + c = 0, then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+...

    Text Solution

    |

  15. If a + b + c = 0, then prove that (2a^2)/(a^2-b^2-c^2)+(2b^2)/(b^2-...

    Text Solution

    |

  16. If a + b + c = 0, then prove that (a^2+b^2+c^2)/(a^3+b^3+c^3)+2/3(1...

    Text Solution

    |

  17. If a+b=c then prove that 1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)+1/(a^2+b^2...

    Text Solution

    |

  18. If a+b+c=0, then prove that a(c+a)(a+b)=b(a+b)(b+c)=c(a+c)(b+c)=abc

    Text Solution

    |

  19. If a+b+c=0, then prove that a(b+c)^2+b(c+a)^2+c(a+b)^2=3abc

    Text Solution

    |

  20. If A=ax+by+cz, B=bx+cy+az, C=cx+ay+bz and a+b+c=0, then prove that A...

    Text Solution

    |