Home
Class 14
MATHS
A contractor deployed some men to plant ...

A contractor deployed some men to plant 1800 trees in a certain no. of days. But in 1/3rd of the planned time 120 plants could be less planted so to fulfill the target for the rest of the days everyday 20 more plants were planted. Thus it saved one day out of the initially planned no. of days. How many plants he planned to plant each day initially?

A

A)180

B

B)100

C

C)120

D

D)160

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break down the information given and use it to find out how many plants the contractor initially planned to plant each day. ### Step 1: Define Variables Let \( x \) be the number of trees the contractor planned to plant each day initially. Let \( d \) be the total number of days planned to plant 1800 trees. ### Step 2: Calculate Total Trees Planned The total number of trees to be planted is 1800. Therefore, the equation for the total trees planted in \( d \) days is: \[ x \cdot d = 1800 \] ### Step 3: Determine Trees Planted in One-Third of Planned Time In one-third of the planned time, the contractor would have worked for \( \frac{d}{3} \) days. The number of trees that should have been planted in this time is: \[ \text{Trees planted} = x \cdot \frac{d}{3} \] However, it is given that 120 trees less were planted, so the actual number of trees planted is: \[ x \cdot \frac{d}{3} - 120 \] ### Step 4: Calculate Remaining Trees The remaining trees to be planted after one-third of the time is: \[ 1800 - \left( x \cdot \frac{d}{3} - 120 \right) = 1800 - x \cdot \frac{d}{3} + 120 \] This simplifies to: \[ 1800 + 120 - x \cdot \frac{d}{3} = 1920 - x \cdot \frac{d}{3} \] ### Step 5: Determine Remaining Days The remaining time after one-third of the planned time is \( \frac{2d}{3} \) days. However, since the contractor saves one day, the effective remaining days are: \[ \frac{2d}{3} - 1 \] ### Step 6: Calculate New Daily Planting Rate To meet the target, the contractor plants 20 more trees each day than initially planned. Therefore, the new daily planting rate is: \[ x + 20 \] The total trees planted in the remaining days is: \[ (x + 20) \left( \frac{2d}{3} - 1 \right) \] ### Step 7: Set Up the Equation Now we can set the equation for the remaining trees: \[ 1920 - x \cdot \frac{d}{3} = (x + 20) \left( \frac{2d}{3} - 1 \right) \] ### Step 8: Expand and Simplify the Equation Expanding the right side: \[ 1920 - x \cdot \frac{d}{3} = (x + 20) \cdot \frac{2d}{3} - (x + 20) \] This gives: \[ 1920 - x \cdot \frac{d}{3} = \frac{2xd}{3} + \frac{40d}{3} - x - 20 \] ### Step 9: Rearranging the Equation Rearranging the equation to isolate \( x \): \[ 1920 + 20 = \frac{2xd}{3} + x + \frac{40d}{3} + x \cdot \frac{d}{3} \] This simplifies to: \[ 1940 = \frac{2xd + 3xd + 40d}{3} \] ### Step 10: Solve for \( x \) To solve for \( x \), we can substitute \( d \) from the first equation \( x \cdot d = 1800 \): \[ d = \frac{1800}{x} \] Substituting this back into the equation will allow us to solve for \( x \). ### Final Calculation By solving the equations step by step, we can find the value of \( x \) which represents the number of trees the contractor planned to plant each day initially.
Promotional Banner

Topper's Solved these Questions

  • PROFIT , LOSS AND DISCOUNT

    QUANTUM CAT|Exercise QUESTION BANK|205 Videos
  • SEQUENCE, SERIES & PROGRESSIONS

    QUANTUM CAT|Exercise QUESTION BANK|243 Videos

Similar Questions

Explore conceptually related problems

Explain how the direction of exchange of gases in plants change with the time of the day.

A contractor employed 30 men to complete the project in 100 days. But later on he realised that just after 25 days only 20% of the work is completed How many men should be increased so that the work will be completed in 25 days less than the scheduled time

Explain how it is possible that a short day plant and a long day plant growing in the same location could flower on the same day of the year.

A certain number of men can do a work in 40 days. If there were 8 men more, it could be finished in 10 days less. How many men were there initially ?

A contractor undertook a work to complete in 60 days. But just after 20 days he observed that only (1)/(5)th of the project work had been completed. To complete the work in time in rest days minimum how many workers he had to increase, if there were initially 75 workers were deployed for the task?

A contractor undertook to complete the work in 40 days and he deployed 20 men for his work. 8 days before the scheduled time he realised that (1)/(3)rd of the work was still to be done. How many more men were required to complete the work in stipulated time?

QUANTUM CAT-RATIO, PROPORTION & VARIATION-QUESTION BANK
  1. Distance covered by a train is directly proportional to the time taken...

    Text Solution

    |

  2. The weight of a person on earth is 600 N. His weight on moon will appe...

    Text Solution

    |

  3. A contractor deployed some men to plant 1800 trees in a certain no. of...

    Text Solution

    |

  4. A and B have to write 810 and 900 pages respectively in the same time ...

    Text Solution

    |

  5. If Rs 150.0 is divided among A, B and C in the ratio of 2 : 3 : 5 , t...

    Text Solution

    |

  6. In Maa Yatri Temple every devotee offers fruits to the orphans. Thus e...

    Text Solution

    |

  7. In two alloys the ratio of Iron and copper is 4:3 and 6:1 respectively...

    Text Solution

    |

  8. In a zoo, there are rabbits and pigeons. If heads are counted there ar...

    Text Solution

    |

  9. 6 litre is taken out from a vessel full of Kerosene and substituted by...

    Text Solution

    |

  10. In three vessels, each of 25 litres capacity, mixture of milk and wate...

    Text Solution

    |

  11. Two liquids are mixed in the ratio 4:3 and the mixture is sold at Rs. ...

    Text Solution

    |

  12. Two alloys made up of copper and tin. The ratio of copper and tin in t...

    Text Solution

    |

  13. Three vessels having volumes in the ratio of 2:3:5 are full of a mixtu...

    Text Solution

    |

  14. The number of oranges in three baskets are in the ratio of 3:4:5. In w...

    Text Solution

    |

  15. A vessel of capacity 2 litre is 25% alcohol and another vessel of capa...

    Text Solution

    |

  16. Alloy A contains 40% gold and 60% silver. Alloy B contains 35% gold an...

    Text Solution

    |

  17. Dia and Urea are two chemical fertilizers. Dia is consists of N,P and ...

    Text Solution

    |

  18. The ratio of copper and nickel by weight in the two alloys X and Y are...

    Text Solution

    |

  19. There are two alloys made up of copper and aluminum. In the first allo...

    Text Solution

    |

  20. There are 90 litre casrol and 150 litres CRB mobil oils. The price of ...

    Text Solution

    |