Home
Class 14
MATHS
The least number of complete years in wh...

The least number of complete years in which, a sum of money put at `20%` CI will be more than doubled is :

A

4

B

5

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the least number of complete years in which a sum of money put at 20% compound interest (CI) will be more than doubled, we can follow these steps: ### Step 1: Understand the Problem We need to determine how many years it will take for an initial amount (let's call it P) to become more than double (i.e., more than 2P) when compounded annually at a rate of 20%. **Hint:** Remember that doubling means we want the final amount to be greater than 2 times the principal. ### Step 2: Use the Compound Interest Formula The formula for compound interest is: \[ A = P \left(1 + \frac{r}{100}\right)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial sum of money). - \( r \) is the annual interest rate (in percentage). - \( n \) is the number of years the money is invested or borrowed. **Hint:** You will substitute \( r = 20 \) and \( A > 2P \). ### Step 3: Set Up the Inequality We need: \[ P \left(1 + \frac{20}{100}\right)^n > 2P \] This simplifies to: \[ \left(1.2\right)^n > 2 \] **Hint:** You can divide both sides by P since P is positive. ### Step 4: Solve for n To solve for \( n \), we can take the logarithm of both sides: \[ n \log(1.2) > \log(2) \] Thus, \[ n > \frac{\log(2)}{\log(1.2)} \] **Hint:** Use a calculator to find the values of \( \log(2) \) and \( \log(1.2) \). ### Step 5: Calculate the Values Using a calculator: - \( \log(2) \approx 0.3010 \) - \( \log(1.2) \approx 0.0792 \) Now substitute these values into the inequality: \[ n > \frac{0.3010}{0.0792} \approx 3.8 \] **Hint:** Since we need the least number of complete years, round up to the next whole number. ### Step 6: Conclusion Since \( n \) must be a complete year, we round 3.8 up to 4. Therefore, the least number of complete years in which the sum of money will be more than doubled at 20% CI is **4 years**. **Final Answer:** 4 years
Promotional Banner

Topper's Solved these Questions

  • AVERAGES

    QUANTUM CAT|Exercise QUESTION BANK|171 Videos
  • CO-ORDINATE GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|72 Videos

Similar Questions

Explore conceptually related problems

The least number of complete years in which a sum of money put out at 20% compound interest will be more than double is (a) 3 (b) 4 (c) 5 (d) 6

What is the least number of complete years in which a sum of money put out at 40% annual compound interest will be more than trebled?

QUANTUM CAT-CI/ SI/ INSTALMENTS-QUESTION BANK
  1. At compound interest , if a certain sum of money doubles in n years , ...

    Text Solution

    |

  2. Rs. 6000 amounts to Rs . 7986 in 3 years at Cl. The rate of interest i...

    Text Solution

    |

  3. The least number of complete years in which, a sum of money put at 20%...

    Text Solution

    |

  4. The Cl on Rs. 5000 for 3 years at 8% for first year, 10% for second ye...

    Text Solution

    |

  5. A sum of Rs. 2400 deposited at Cl, doubled after 5 years. After 20 yea...

    Text Solution

    |

  6. A sum of ₹ 550 was taken as a loan. This is to be paid back in two equ...

    Text Solution

    |

  7. The difference between CI and SI on a sum of money lent for 2 years at...

    Text Solution

    |

  8. The difference between simple and compound interest on Rs. 6000 for 1 ...

    Text Solution

    |

  9. A certain sum amounts to ₹ 8988.8 in two years and to ₹ 9528.128 in th...

    Text Solution

    |

  10. The compound interest and the simple interest for two years on a certa...

    Text Solution

    |

  11. The compound interest on a certain sum at a certain rate of interest f...

    Text Solution

    |

  12. Amit borrowed ₹ 800 at 10% rate of interest. He repaid ₹ 400 at the en...

    Text Solution

    |

  13. A sonata watch is sold for ₹ 440 cash or for ₹ 200 cash down payment ...

    Text Solution

    |

  14. A cellphone is available for ₹ 600 or for 300 cash down payment togeth...

    Text Solution

    |

  15. Abhinav purchases a track suit for ₹ 2400 cash or for ₹ 1000 cash down...

    Text Solution

    |

  16. Indicom cell-phone is available for ₹ 2500 cash or ₹ 520 cash down pay...

    Text Solution

    |

  17. An article is sold for ₹ 500 cash or for ₹ 150 cash down payments foll...

    Text Solution

    |

  18. A sum of Rs. 390200 is to paid back in three equal annual installments...

    Text Solution

    |

  19. Pumima borrowed a sum of money and returned it in three equal quarterl...

    Text Solution

    |

  20. Sunidhi borrowed ₹ 10815, which is to be paid back in 3 equal half yea...

    Text Solution

    |