Home
Class 14
MATHS
What is the value of , (sin(90^@-theta...

What is the value of ,
`(sin(90^@-theta)sec(180^@-theta)sin(-theta))/(sin(180^@+theta)cot(360^@-theta)cosec(90^@+theta))` :

A

`sintheta`

B

`costheta`

C

1

D

`1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(90^\circ - \theta) \cdot \sec(180^\circ - \theta) \cdot \sin(-\theta)}{\sin(180^\circ + \theta) \cdot \cot(360^\circ - \theta) \cdot \csc(90^\circ + \theta)} \] we will simplify each term step by step. ### Step 1: Simplify \(\sin(90^\circ - \theta)\) Using the co-function identity, we have: \[ \sin(90^\circ - \theta) = \cos(\theta) \] ### Step 2: Simplify \(\sec(180^\circ - \theta)\) In the second quadrant, the secant function is negative: \[ \sec(180^\circ - \theta) = -\sec(\theta) \] ### Step 3: Simplify \(\sin(-\theta)\) Using the odd function property of sine: \[ \sin(-\theta) = -\sin(\theta) \] ### Step 4: Substitute into the numerator Now, substituting back into the numerator: \[ \text{Numerator} = \cos(\theta) \cdot (-\sec(\theta)) \cdot (-\sin(\theta)) = \cos(\theta) \cdot \sec(\theta) \cdot \sin(\theta) \] Since \(\sec(\theta) = \frac{1}{\cos(\theta)}\), we have: \[ \text{Numerator} = \sin(\theta) \] ### Step 5: Simplify \(\sin(180^\circ + \theta)\) In the third quadrant, sine is negative: \[ \sin(180^\circ + \theta) = -\sin(\theta) \] ### Step 6: Simplify \(\cot(360^\circ - \theta)\) In the fourth quadrant, cotangent is positive: \[ \cot(360^\circ - \theta) = \cot(\theta) \] ### Step 7: Simplify \(\csc(90^\circ + \theta)\) In the first quadrant, cosecant is positive: \[ \csc(90^\circ + \theta) = \sec(\theta) \] ### Step 8: Substitute into the denominator Now, substituting back into the denominator: \[ \text{Denominator} = (-\sin(\theta)) \cdot \cot(\theta) \cdot \sec(\theta) \] Using \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\) and \(\sec(\theta) = \frac{1}{\cos(\theta)}\), we have: \[ \text{Denominator} = -\sin(\theta) \cdot \frac{\cos(\theta)}{\sin(\theta)} \cdot \frac{1}{\cos(\theta)} = -1 \] ### Step 9: Combine numerator and denominator Now we can combine the numerator and denominator: \[ \frac{\sin(\theta)}{-1} = -\sin(\theta) \] ### Final Result Thus, the value of the original expression is: \[ -\sin(\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TIME, SPEED AND DISTANCE

    QUANTUM CAT|Exercise QUESTION BANK|368 Videos

Similar Questions

Explore conceptually related problems

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

Prove that: (tan(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)csc(90^(@)-theta))=1

(cot(90^(@)-theta)sin(180^(@)-theta)sec(360^(@)-theta))/(tan(180^(@)+theta)sec(-theta)cos(90^(@)+theta))

(cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

Find the value of (sin theta)/(cos (90^@+theta))+(sin theta)/(sin (180^@+theta))+(tan(90^@+theta))/(cot theta)

(cos theta)/(sin(90^(@)+theta))+(sin(-theta))/(sin(180^(@)+theta))-(tan(90^(@)+theta))/(cot theta)

What is the value of (sin theta)/(cosec theta)+(cos theta)/(sec theta) ?

(sin(-theta)tan(90^@+theta)tan(180^@-theta))/(sin(180^@-theta)cos(90^@-theta)cos360^@-theta))=sec theta cosec theta

QUANTUM CAT-TRIGONOMETRY-QUESTION BANK
  1. Find the value of cos20^(@)+cos100^(@)+cos140^(@):

    Text Solution

    |

  2. cos20^(@).cos40^(@).cos60^(@).cos80^(@) is :

    Text Solution

    |

  3. What is the value of , (sin(90^@-theta)sec(180^@-theta)sin(-theta))/...

    Text Solution

    |

  4. If sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13), find the value o...

    Text Solution

    |

  5. Find the value of (cos2B-cos 2A)/(sin2A+sin2B):

    Text Solution

    |

  6. (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A) is :

    Text Solution

    |

  7. If costheta=3/5, find the value of sin2theta :

    Text Solution

    |

  8. find the value of expression (sin2x)/(1+cos2x) is:

    Text Solution

    |

  9. find the value of the following expression cos^4theta-sin^4theta is :

    Text Solution

    |

  10. If cotx=(a)/(b), find the value of a cos2x+b sin 2x

    Text Solution

    |

  11. Find the value of cot3theta:

    Text Solution

    |

  12. Find the value of sin(22 1/2)^@ :

    Text Solution

    |

  13. If 2 cos theta=x+(1)/(x), find the value of 2cos 3 theta

    Text Solution

    |

  14. Find the value of tanA+tanB+tanC, if A+B+C=pi:

    Text Solution

    |

  15. If cos B=(sinA)/(2sinC), find the nature of triangle :

    Text Solution

    |

  16. If the angles of a triangle are in the ratio 1:2:3 and its circumradiu...

    Text Solution

    |

  17. If a=1, b=sqrt3 and angleA=30^(@), find the value of the angle B:

    Text Solution

    |

  18. Find B and C of a triangle ABC, if b = 2 cm, c = 1 cm and A=60^(@).

    Text Solution

    |

  19. In a triangle ABC, a=1cm, b=sqrt3 and C=(pi)/(6), find the third side ...

    Text Solution

    |

  20. If the angles of a triangle are in the ratio 1:2:3, find the ratio bet...

    Text Solution

    |