Home
Class 14
MATHS
If costheta=3/5, find the value of sin2t...

If `costheta=3/5`, find the value of `sin2theta` :

A

`24/25`

B

`16/25`

C

`9/20`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 2\theta \) given that \( \cos \theta = \frac{3}{5} \), we can follow these steps: ### Step 1: Identify the values of \( \cos \theta \) We know that: \[ \cos \theta = \frac{3}{5} \] This means that in a right triangle, the adjacent side (base) is 3 and the hypotenuse is 5. ### Step 2: Use the Pythagorean theorem to find \( \sin \theta \) Using the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{perpendicular}^2 + \text{base}^2 \] Let \( \text{perpendicular} = y \). Then: \[ 5^2 = y^2 + 3^2 \] \[ 25 = y^2 + 9 \] \[ y^2 = 25 - 9 = 16 \] \[ y = \sqrt{16} = 4 \] Thus, \( \sin \theta = \frac{y}{\text{hypotenuse}} = \frac{4}{5} \). ### Step 3: Use the double angle formula for sine The formula for \( \sin 2\theta \) is: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] ### Step 4: Substitute the values of \( \sin \theta \) and \( \cos \theta \) Now substitute the values we found: \[ \sin 2\theta = 2 \left(\frac{4}{5}\right) \left(\frac{3}{5}\right) \] \[ = 2 \cdot \frac{4 \cdot 3}{5 \cdot 5} \] \[ = 2 \cdot \frac{12}{25} \] \[ = \frac{24}{25} \] ### Final Answer Thus, the value of \( \sin 2\theta \) is: \[ \sin 2\theta = \frac{24}{25} \] ---
Promotional Banner

Topper's Solved these Questions

  • TIME, SPEED AND DISTANCE

    QUANTUM CAT|Exercise QUESTION BANK|368 Videos

Similar Questions

Explore conceptually related problems

If sin theta=(4)/(5) , find the value of sin2theta :

If sin theta - cos theta =1/29 find the value of sintheta + costheta .

If sin theta = 3//5, find the values of cosine theta and tangent theta.

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .

If, 5cot theta =3 ,Find the value of (6sintheta-3costheta)/(7sintheta+3costheta)

If costheta= (4)/(5) then find the value of (sinthetacostheta+tan^(2)theta) .

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

QUANTUM CAT-TRIGONOMETRY-QUESTION BANK
  1. Find the value of (cos2B-cos 2A)/(sin2A+sin2B):

    Text Solution

    |

  2. (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A) is :

    Text Solution

    |

  3. If costheta=3/5, find the value of sin2theta :

    Text Solution

    |

  4. find the value of expression (sin2x)/(1+cos2x) is:

    Text Solution

    |

  5. find the value of the following expression cos^4theta-sin^4theta is :

    Text Solution

    |

  6. If cotx=(a)/(b), find the value of a cos2x+b sin 2x

    Text Solution

    |

  7. Find the value of cot3theta:

    Text Solution

    |

  8. Find the value of sin(22 1/2)^@ :

    Text Solution

    |

  9. If 2 cos theta=x+(1)/(x), find the value of 2cos 3 theta

    Text Solution

    |

  10. Find the value of tanA+tanB+tanC, if A+B+C=pi:

    Text Solution

    |

  11. If cos B=(sinA)/(2sinC), find the nature of triangle :

    Text Solution

    |

  12. If the angles of a triangle are in the ratio 1:2:3 and its circumradiu...

    Text Solution

    |

  13. If a=1, b=sqrt3 and angleA=30^(@), find the value of the angle B:

    Text Solution

    |

  14. Find B and C of a triangle ABC, if b = 2 cm, c = 1 cm and A=60^(@).

    Text Solution

    |

  15. In a triangle ABC, a=1cm, b=sqrt3 and C=(pi)/(6), find the third side ...

    Text Solution

    |

  16. If the angles of a triangle are in the ratio 1:2:3, find the ratio bet...

    Text Solution

    |

  17. If a=2b and A=3B, find the angles A, B, C of DeltaABC :

    Text Solution

    |

  18. If in any triagnle a=13cm, b= 14 cm and c = 15cm, find the inradius of...

    Text Solution

    |

  19. In a right angled triangle a^2+b^2+c^2 is :

    Text Solution

    |

  20. Abhinav and Brijesh started walking simultaneously @ 3 km/h and 4 km/h...

    Text Solution

    |