Home
Class 14
MATHS
If secx=P, cosecx=Q, then:...

If secx=P, cosecx=Q, then:

A

`P^2+Q^2=PQ`

B

`P^2+Q^2=P^2Q^2`

C

`P^2-Q^2=P^2Q^2`

D

`P^2+Q^2=-P^2Q^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where sec(x) = P and cosec(x) = Q, we can derive a relationship between P and Q step by step. ### Step-by-Step Solution: 1. **Understanding the Definitions**: - We know that: \[ \sec(x) = \frac{1}{\cos(x)} \quad \text{and} \quad \csc(x) = \frac{1}{\sin(x)} \] - Therefore, we can express P and Q as: \[ P = \frac{1}{\cos(x)} \quad \text{and} \quad Q = \frac{1}{\sin(x)} \] 2. **Squaring Both Sides**: - We square both P and Q: \[ P^2 = \frac{1}{\cos^2(x)} \quad \text{and} \quad Q^2 = \frac{1}{\sin^2(x)} \] 3. **Adding the Two Equations**: - Now, we add P² and Q²: \[ P^2 + Q^2 = \frac{1}{\cos^2(x)} + \frac{1}{\sin^2(x)} \] 4. **Finding a Common Denominator**: - The common denominator for the right side is \(\sin^2(x) \cos^2(x)\): \[ P^2 + Q^2 = \frac{\sin^2(x) + \cos^2(x)}{\sin^2(x) \cos^2(x)} \] 5. **Using the Pythagorean Identity**: - We know from trigonometric identities that: \[ \sin^2(x) + \cos^2(x) = 1 \] - Substituting this into our equation gives: \[ P^2 + Q^2 = \frac{1}{\sin^2(x) \cos^2(x)} \] 6. **Rearranging the Equation**: - We can rewrite this as: \[ P^2 + Q^2 = \sec^2(x) \csc^2(x) \] 7. **Conclusion**: - Thus, we have derived that: \[ P^2 + Q^2 = \sec^2(x) \csc^2(x) \] ### Final Result: The relationship between P and Q is: \[ P^2 + Q^2 = \sec^2(x) \csc^2(x) \]
Promotional Banner

Topper's Solved these Questions

  • TIME, SPEED AND DISTANCE

    QUANTUM CAT|Exercise QUESTION BANK|368 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 2cosec2x + secx + cosecx then in (0,pi/2)

If sinx+cosecx=2 then sinx=

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

If m=sinx+cos x+tan x+cot x+sec x+cosec x and n=sinx+cosx-tanx-cotx-secx-cosecx then (m+n-2)(m-n)=( where x is an acute angle )

If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in R , is

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?

If f(x)=[(sinx,cosecx,tanx),(secx,xsinx,xtanx),(x^2-1,cosx,x^2+1)] then int_(-a) ^ a f(x) dx equals

intdx/(secx+cosecx)

If tanx+secx=2cot(90^(@)+x) , then cosecx=?

QUANTUM CAT-TRIGONOMETRY-QUESTION BANK
  1. If theta lies in the second quadrant, then sqrt((1-sintheta)/(1+sin th...

    Text Solution

    |

  2. cos^6A+sin^6A is equal to:

    Text Solution

    |

  3. If secx=P, cosecx=Q, then:

    Text Solution

    |

  4. sin^(2)Acos^(2)B-cos^(2)A sin^(2)B simplifies to :

    Text Solution

    |

  5. If sin2x=n sin 2y, then the value of (tan(x+y))/(tan(x-y)) is :

    Text Solution

    |

  6. The least value of 3sin^2theta+4cos^2theta is:

    Text Solution

    |

  7. The value of cot(180+theta)cot(90-theta) is:

    Text Solution

    |

  8. logtan1^@+logtan2^@+.....+logtan89^@ is :

    Text Solution

    |

  9. If we convert sin(-566^(@)) to same trigonometrical ratio of a positiv...

    Text Solution

    |

  10. From the Masthead of a ship, the angle of Depression of boat is 60^@, ...

    Text Solution

    |

  11. some portion of a 30m long tree is broken by tornado and the top struc...

    Text Solution

    |

  12. Two posts are 25 m and 15 m high and the line joining their tips makes...

    Text Solution

    |

  13. The angle of elevation of the top of a tower at a point G on the groun...

    Text Solution

    |

  14. If x=sectheta-tantheta, y=sectheta+tantheta, then the relation between...

    Text Solution

    |

  15. The value of theta for which sqrt3costheta+sintheta=1 is:

    Text Solution

    |

  16. If cottheta=3/4, then the value of sqrt((1+costheta)/(1-costheta)) is:

    Text Solution

    |

  17. If the arcs of the same length in two circles subtend angles of 60^(@)...

    Text Solution

    |

  18. In the third quadrant, the values of sintheta and costheta are:

    Text Solution

    |

  19. The value of (cot50^@)/(tan40^@)-1/2 cos55^@/sin35^@ is:

    Text Solution

    |

  20. The value of theta(0 lt a lt pi/2) satisfying the equation sin^2theta...

    Text Solution

    |