Home
Class 11
MATHS
If "sin" alpha=ksinbeta then tan((alpha-...

If `"sin" alpha=ksinbeta` then `tan((alpha-beta)/(2)).cot((alpha+beta)/(2))` is equal to

A

(a)`(k-1)/(k+1)`

B

(b)`(k+1)/(k-1)`

C

(c)`(1+k)/(1-k)`

D

(d)`(1-k)/(1+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{\alpha - \beta}{2}\right) \cot\left(\frac{\alpha + \beta}{2}\right) \) given that \( \sin \alpha = k \sin \beta \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \sin \alpha = k \sin \beta \] This implies: \[ \frac{\sin \alpha}{\sin \beta} = k \] 2. **Apply the component to a dividendo:** Using the component to a dividendo method, we have: \[ \frac{\sin \alpha - \sin \beta}{\sin \alpha + \sin \beta} = \frac{k - 1}{k + 1} \] 3. **Use the sine subtraction and addition formulas:** We know: \[ \sin \alpha - \sin \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] and \[ \sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] 4. **Substitute these identities into the equation:** Substituting the sine formulas into our equation gives: \[ \frac{2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right)}{2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)} = \frac{k - 1}{k + 1} \] 5. **Cancel the common factors:** The factor of 2 cancels out: \[ \frac{\cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right)}{\sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)} = \frac{k - 1}{k + 1} \] 6. **Rewrite in terms of tangent and cotangent:** This can be rewritten as: \[ \tan\left(\frac{\alpha - \beta}{2}\right) \cot\left(\frac{\alpha + \beta}{2}\right) = \frac{k - 1}{k + 1} \] 7. **Final result:** Thus, we conclude that: \[ \tan\left(\frac{\alpha - \beta}{2}\right) \cot\left(\frac{\alpha + \beta}{2}\right) = \frac{k - 1}{k + 1} \] ### Final Answer: \[ \tan\left(\frac{\alpha - \beta}{2}\right) \cot\left(\frac{\alpha + \beta}{2}\right) = \frac{k - 1}{k + 1} \]
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINE

    ICSE|Exercise CHAPTER TEST |15 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

if tan alpha = 2tanbeta show that (sin(alpha+beta))/(sin(alpha-beta)) = 3

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

If 5 sinalpha=3"sin"(alpha+2beta)!=0, then tan(alpha+beta) is equal to

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

ICSE-TRIGONOMETRIC FUNCTION-MULTIPLE CHOICE QUESTIONS
  1. The value of "cot"(pi/(4)+theta)."cot"(pi/(4)-theta) is (i) -1 (ii...

    Text Solution

    |

  2. "cos"2theta."cos"2phi+"sin"^(2)(theta-phi)-"sin"^(2)(theta+phi) is equ...

    Text Solution

    |

  3. If for real x, "cos"theta=x+(1)/(x), then

    Text Solution

    |

  4. If "tan"A=1/(2),"tan"B=1/(3), then "tan"(2A+B) is equal to

    Text Solution

    |

  5. If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

    Text Solution

    |

  6. If "sin"theta=-4/(5) and theta lies in third quadrant, then the value ...

    Text Solution

    |

  7. The greatest value of "sin"x."cos"x is

    Text Solution

    |

  8. acosx+bsinx lies between

    Text Solution

    |

  9. Number of solution of the equation tanx+secx=2cosx lying in the interv...

    Text Solution

    |

  10. If cosx=-3/(5)andpiltxlt(3pi)/(2), then ("cosec"x+"cot"x)/("sec"x-"tan...

    Text Solution

    |

  11. The value of sin(pi+x).sin(pi-x)."cosec"^(2)x is

    Text Solution

    |

  12. The value of 3"sin"pi/(6)."sec"pi/(3)-4"sin"(5pi)/(6)."cot"pi/(4) is ...

    Text Solution

    |

  13. If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2...

    Text Solution

    |

  14. If sinx=1/(3), then the value of sin3x is

    Text Solution

    |

  15. The value of "cos"^(2)48^(@)-"sin"^(2)12^(@) is

    Text Solution

    |

  16. The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16p...

    Text Solution

    |

  17. The general solution of the equation tan(2x+pi/(12))=0 is

    Text Solution

    |

  18. The general solution of the equation "sin"^(2)x."sec"x+sqrt(3) tanx=0 ...

    Text Solution

    |

  19. If A lies in the second quadrant and 3tanA+4=0, then the value of 2co...

    Text Solution

    |

  20. If tantheta=a/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |