Home
Class 11
MATHS
The value of "cos"^(2)48^(@)-"sin"^(2)12...

The value of `"cos"^(2)48^(@)-"sin"^(2)12^(@)` is

A

`(sqrt(5)+1)/8`

B

`(sqrt(5)-1)/8`

C

`(sqrt(5)+1)/4`

D

`(sqrt(5)-1)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \cos^2 48^\circ - \sin^2 12^\circ \), we can use the trigonometric identity that relates the difference of squares of cosine and sine functions. ### Step-by-Step Solution: 1. **Identify the expression**: We need to evaluate \( \cos^2 48^\circ - \sin^2 12^\circ \). 2. **Use the identity**: We can use the identity \( \cos^2 A - \sin^2 B = \cos(A + B) \cdot \cos(A - B) \). Here, let \( A = 48^\circ \) and \( B = 12^\circ \). 3. **Calculate \( A + B \) and \( A - B \)**: - \( A + B = 48^\circ + 12^\circ = 60^\circ \) - \( A - B = 48^\circ - 12^\circ = 36^\circ \) 4. **Substitute into the identity**: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(60^\circ) \cdot \cos(36^\circ) \] 5. **Find the values of \( \cos(60^\circ) \) and \( \cos(36^\circ) \)**: - \( \cos(60^\circ) = \frac{1}{2} \) - \( \cos(36^\circ) = \frac{\sqrt{5} + 1}{4} \) (This is a known value) 6. **Multiply the results**: \[ \cos^2 48^\circ - \sin^2 12^\circ = \frac{1}{2} \cdot \frac{\sqrt{5} + 1}{4} \] \[ = \frac{\sqrt{5} + 1}{8} \] 7. **Final result**: Therefore, the value of \( \cos^2 48^\circ - \sin^2 12^\circ \) is \( \frac{\sqrt{5} + 1}{8} \). ### Conclusion: The answer is \( \frac{\sqrt{5} + 1}{8} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE STRAIGHT LINE

    ICSE|Exercise CHAPTER TEST |15 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

Find the value of (cos48^@-sin42^@)

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these

The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

The value of (2sin40^(@).sin50^(@).tan10^(@))/(cos 80^(@)) is

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

Find the value of ((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@))

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is