Home
Class 11
MATHS
The value of "cos"(2pi)/(15)."cos"(4pi)/...

The value of `"cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16pi)/(15)` is

A

(a)`-1/(16)`

B

(b)`-1/(8)`

C

(c) `1/(8)`

D

(d)`1/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 1: Multiply and Divide by \(2 \sin\left(\frac{2\pi}{15}\right)\) We start by multiplying and dividing the expression by \(2 \sin\left(\frac{2\pi}{15}\right)\): \[ = \frac{1}{2 \sin\left(\frac{2\pi}{15}\right)} \cdot 2 \sin\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 2: Apply the Formula \(2 \sin \theta \cos \theta = \sin(2\theta)\) Using the identity \(2 \sin \theta \cos \theta = \sin(2\theta)\): \[ = \frac{1}{2 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 3: Multiply and Divide by \(2\) Next, we multiply and divide by \(2\) again: \[ = \frac{1}{4 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{4\pi}{15}\right) \cdot 2 \sin\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 4: Apply the Formula Again Using the identity again: \[ = \frac{1}{4 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 5: Multiply and Divide by \(2\) Again We repeat the process: \[ = \frac{1}{8 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{8\pi}{15}\right) \cdot 2 \sin\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 6: Apply the Formula Once More Using the identity again: \[ = \frac{1}{8 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{16\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 7: Multiply and Divide by \(2\) Again We multiply and divide by \(2\): \[ = \frac{1}{16 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{32\pi}{15}\right) \] ### Step 8: Simplify Using the Sine Function Identity Using the identity \(\sin(2\pi + \theta) = \sin(\theta)\): \[ \sin\left(\frac{32\pi}{15}\right) = \sin\left(2\pi + \frac{2\pi}{15}\right) = \sin\left(\frac{2\pi}{15}\right) \] ### Step 9: Final Simplification Now we can simplify: \[ = \frac{1}{16 \sin\left(\frac{2\pi}{15}\right)} \cdot \sin\left(\frac{2\pi}{15}\right) = \frac{1}{16} \] Thus, the value of the expression is: \[ \boxed{\frac{1}{16}} \]
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINE

    ICSE|Exercise CHAPTER TEST |15 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15))=1/(16)

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

Find the value of cos^2pi/(16)+cos^2(3pi)/(16)+cos^2(5pi)/(16)+cos^2(7pi)/(16)dot

ICSE-TRIGONOMETRIC FUNCTION-MULTIPLE CHOICE QUESTIONS
  1. The value of "cot"(pi/(4)+theta)."cot"(pi/(4)-theta) is (i) -1 (ii...

    Text Solution

    |

  2. "cos"2theta."cos"2phi+"sin"^(2)(theta-phi)-"sin"^(2)(theta+phi) is equ...

    Text Solution

    |

  3. If for real x, "cos"theta=x+(1)/(x), then

    Text Solution

    |

  4. If "tan"A=1/(2),"tan"B=1/(3), then "tan"(2A+B) is equal to

    Text Solution

    |

  5. If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

    Text Solution

    |

  6. If "sin"theta=-4/(5) and theta lies in third quadrant, then the value ...

    Text Solution

    |

  7. The greatest value of "sin"x."cos"x is

    Text Solution

    |

  8. acosx+bsinx lies between

    Text Solution

    |

  9. Number of solution of the equation tanx+secx=2cosx lying in the interv...

    Text Solution

    |

  10. If cosx=-3/(5)andpiltxlt(3pi)/(2), then ("cosec"x+"cot"x)/("sec"x-"tan...

    Text Solution

    |

  11. The value of sin(pi+x).sin(pi-x)."cosec"^(2)x is

    Text Solution

    |

  12. The value of 3"sin"pi/(6)."sec"pi/(3)-4"sin"(5pi)/(6)."cot"pi/(4) is ...

    Text Solution

    |

  13. If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2...

    Text Solution

    |

  14. If sinx=1/(3), then the value of sin3x is

    Text Solution

    |

  15. The value of "cos"^(2)48^(@)-"sin"^(2)12^(@) is

    Text Solution

    |

  16. The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16p...

    Text Solution

    |

  17. The general solution of the equation tan(2x+pi/(12))=0 is

    Text Solution

    |

  18. The general solution of the equation "sin"^(2)x."sec"x+sqrt(3) tanx=0 ...

    Text Solution

    |

  19. If A lies in the second quadrant and 3tanA+4=0, then the value of 2co...

    Text Solution

    |

  20. If tantheta=a/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |