Home
Class 11
MATHS
If the coefficient of middle term of the...

If the coefficient of middle term of the binomial expansion of `(1+x)^(2n)` is `alpha` and those of two middle terms of the binomial expansion of `(1+x)^(2n-1)` if `beta` and `gamma`, then which one of the following is correct?
(i) `alpha gt beta +gamma`
(ii) `alpha lt beta + gamma`
(iii) `alpha=beta+gamma`
(iv) `alpha = beta gamma`

A

`alpha gt beta +gamma`

B

`alpha lt beta + gamma`

C

`alpha=beta+gamma`

D

`alpha = beta gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the coefficients of the middle terms in the binomial expansions of \((1+x)^{2n}\) and \((1+x)^{2n-1}\). ### Step 1: Coefficient of the middle term in \((1+x)^{2n}\) The binomial expansion of \((1+x)^{2n}\) has \(2n + 1\) terms. The middle term is the \((n + 1)\)-th term. The coefficient of the middle term can be calculated using the binomial coefficient: \[ \text{Coefficient of middle term} = \binom{2n}{n} \] Let this coefficient be \(\alpha\): \[ \alpha = \binom{2n}{n} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|21 Videos
  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (a)|27 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

If the coefficient of the middle term in the expansion of (1+x)^(2n+2) is alpha and the coefficients of middle terms in the expansion of (1+x)^(2n+1) are beta and gamma then relate alpha, beta and gammadot

If the coefficient of the middle term in the expansion of (1+x)^(2n+2)i salpha and the coefficients of middle terms in the expansion of (1+x)^(2n+1) are beta and gamma then relate alpha,betaa n dgammadot

If alpha, beta and gamma the roots of the equation x^(3) + 3x^(2) - 4x - 2 = 0. then find the values of the following expressions: (i) alpha ^(2) + beta^(2) + gamma^(2) (ii) alpha ^(3) + beta^(3) + gamma^(3) (iii) (1)/(alpha)+(1)/(beta)+(1)/(gamma)

If alpha + beta + gamma = π/2 and cot alpha, cot beta, cot gamma are in Ap. Then cot alpha. Cot gamma

If 2x^(3) + 3x^(2) + 5x +6=0 has roots alpha, beta, gamma then find alpha + beta + gamma, alphabeta + betagamma + gammaalpha and alpha beta gamma

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=