Home
Class 11
MATHS
A set of n value x(1),x(2),……..,x(n) has...

A set of n value `x_(1),x_(2),……..,x_(n)` has mean `barx` and standard deviation `sigma`. The mean and standard deviation of n values `(x_(1))/(k),(x_(2))/(k),.......,(x_(n))/(k)(kne0` respectively are
(i) `kbarx,(sigma)/(k)`
(ii) `(barx)/(k),(sigma)/(k)`
(iii) `kbarx,ksigma`
(iv) `(barx)/(k),ksigma`

A

`kbarx,(sigma)/(k)`

B

`(barx)/(k),(sigma)/(k)`

C

`kbarx,ksigma`

D

`(barx)/(k),ksigma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mean and standard deviation of the new set of values \( \frac{x_1}{k}, \frac{x_2}{k}, \ldots, \frac{x_n}{k} \) given that the original set \( x_1, x_2, \ldots, x_n \) has a mean \( \bar{x} \) and standard deviation \( \sigma \). ### Step-by-Step Solution: 1. **Calculate the Mean of the New Set:** The mean of the original set is given by: \[ \bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \] For the new set \( \frac{x_1}{k}, \frac{x_2}{k}, \ldots, \frac{x_n}{k} \), the mean \( \bar{x}' \) can be calculated as: \[ \bar{x}' = \frac{\frac{x_1}{k} + \frac{x_2}{k} + \ldots + \frac{x_n}{k}}{n} = \frac{1}{k} \cdot \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\bar{x}}{k} \] Thus, the mean of the new set is: \[ \bar{x}' = \frac{\bar{x}}{k} \] 2. **Calculate the Standard Deviation of the New Set:** The standard deviation \( \sigma \) of the original set is given by: \[ \sigma = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2} \] For the new set, the standard deviation \( \sigma' \) can be calculated as follows: \[ \sigma' = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{x_i}{k}\right)^2}{n} - \left(\frac{\sum_{i=1}^{n} \frac{x_i}{k}}{n}\right)^2} \] Simplifying the first term: \[ \frac{\sum_{i=1}^{n} \left(\frac{x_i}{k}\right)^2}{n} = \frac{1}{k^2} \cdot \frac{\sum_{i=1}^{n} x_i^2}{n} \] And the second term: \[ \left(\frac{\sum_{i=1}^{n} \frac{x_i}{k}}{n}\right)^2 = \left(\frac{1}{k} \cdot \frac{\sum_{i=1}^{n} x_i}{n}\right)^2 = \left(\frac{\bar{x}}{k}\right)^2 \] Therefore, we can write: \[ \sigma' = \sqrt{\frac{1}{k^2} \cdot \frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\bar{x}}{k}\right)^2} \] Factoring out \( \frac{1}{k^2} \): \[ \sigma' = \frac{1}{k} \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n} - \bar{x}^2} = \frac{\sigma}{k} \] ### Final Results: - The mean of the new set is \( \frac{\bar{x}}{k} \). - The standard deviation of the new set is \( \frac{\sigma}{k} \). Thus, the correct answer is: \[ \text{(ii) } \left(\frac{\bar{x}}{k}, \frac{\sigma}{k}\right) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

A set of n values x_(1),x_(2),…….,x_(n) has standard deviation sigma . The standard deviation of n values x_(1)-k,x_(2)-k,…….,x_(n)-k is

Let x_(1),x_(2),x_(3),……..,x_(n) be n observations with mean barx and standard deviation sigma . The mean the standard deviation of kx_(1),kx_(2),……,kx_(n) respectively are (i) barx,ksigma (ii) kbarx,sigma (iii) kbarx,ksigma (iv) barx,sigma

If x_(1),x_(2),x_(3),.........,x_(n) be n observations with mean barx and variance sigma^(2) . The mean and variance of x_(1)+k,x_(2)+k,x_(3)+k,......,x_(n)+k respectively are (i) barx+k,sigma^(2) (ii) barx+k,sigma^(2)+k^(2) (iii) barx+k,(sigma+k)^(2) (iv) barx,sigma^(2)

Let x_(1),x_(2),……,x_(n) be n observations and barx be their arithmetic mean. The formula for the standard deviation is

If x_(1),x_(2)……..x_(n) be n observation and barx be their arithmetic mean .Then formula of the standard deviation is given by

If the standard deviation of n observation x_(1), x_(2),…….,x_(n) is 5 and for another set of n observation y_(1), y_(2),………., y_(n) is 4, then the standard deviation of n observation x_(1)-y_(1), x_(2)-y_(2),………….,x_(n)-y_(n) is

If the mean of n observations x_1,x_2,x_3...x_n is barx then the sum of deviations of observations from mean is

The mean of 40 observations 20 and their standard deviation is 5. If the sum of the square of the observations k, then the value of (k)/(1000) is

If for a distribution sum(x-7)=6 and sum(x-7)^(2)=78 and the total number of items is 12 then mean and standard deviation are (i) barx=7.5,sigma=2.5 (ii) barx=7,sigma=2.5 (iii) barx=7.5,sigma=2 (iv) barx=7,sigma=2

If barx is the mean of n observations x_(1),x_(2),x_(3)……x_(n) , then the value of sum_(i=1)^(n)(x_(i)-barx) is (i) -1 (ii) 0 (iii) 1 (iv) n-1

ICSE-STATISTICS-MULTIPLE CHOICE QUESTIONS
  1. Consider the data The frequency of the upper limit of the median...

    Text Solution

    |

  2. The mean deviation for n observations x(1),x(2)…….x(n) from their medi...

    Text Solution

    |

  3. The mean deviation of the data 4,5,7,8,9,10,6 from the median is

    Text Solution

    |

  4. The mean deviation of the data 4,5,7,8,9,10,6 from the median is

    Text Solution

    |

  5. The variance of first 5 natural numbers is (i) 1 (ii) 2 (iii) 3...

    Text Solution

    |

  6. The standard deviation of first 11 nutural numbers is (i) 2 (ii) ...

    Text Solution

    |

  7. If for a distribution sum(x-7)=6 and sum(x-7)^(2)=78 and the total num...

    Text Solution

    |

  8. If for a distribution sumx(i)^2=2400 and sumx(i)=250 and the total num...

    Text Solution

    |

  9. The mean of 100 observations is 50 and their standard deviation is 5. ...

    Text Solution

    |

  10. The mean of 100 observations is 40 and their standard deviation respec...

    Text Solution

    |

  11. The mean of 5 observations is 4.4 and variance is 8.24. If three of th...

    Text Solution

    |

  12. Let x(1),x(2),x(3),……..,x(n) be n observations with mean barx and stan...

    Text Solution

    |

  13. If x(1),x(2),x(3),.........,x(n) be n observations with mean barx and ...

    Text Solution

    |

  14. Consider the numbers 1,2,3,4,5,6,7,8,9,10. If 2 is added to each numbe...

    Text Solution

    |

  15. A set of n values x(1),x(2),…….,x(n) has standard deviation sigma. The...

    Text Solution

    |

  16. A set of n value x(1),x(2),……..,x(n) has mean barx and standard deviat...

    Text Solution

    |

  17. Calculate the possible values of x, if the standard deviation of the n...

    Text Solution

    |

  18. The coefficient of variation of two distributions are 70 and 75 and th...

    Text Solution

    |

  19. The coefficient of variation of distributions are 50 and 60 and their ...

    Text Solution

    |

  20. Let x(1),x(2),……,x(n) be n observations and barx be their arithmetic m...

    Text Solution

    |