Home
Class 12
MATHS
If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(...

If `A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}]` then

A

only AB is defined

B

only BA is defined

C

AB and BA are both defined

D

AB and BA both are not defined

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the matrices \( A \) and \( B \) can be multiplied in both orders (i.e., \( AB \) and \( BA \)), we need to analyze the dimensions of both matrices. 1. **Identify the dimensions of matrix \( A \)**: - Matrix \( A \) is given as: \[ A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 5 & -6 \end{pmatrix} \] - This matrix has 2 rows and 3 columns. Therefore, the order of matrix \( A \) is \( 2 \times 3 \). 2. **Identify the dimensions of matrix \( B \)**: - Matrix \( B \) is given as: \[ B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & -6 \end{pmatrix} \] - This matrix has 3 rows and 2 columns. Therefore, the order of matrix \( B \) is \( 3 \times 2 \). 3. **Check if \( AB \) can be multiplied**: - For the multiplication of two matrices \( AB \) to be valid, the number of columns in the first matrix \( A \) must equal the number of rows in the second matrix \( B \). - Here, matrix \( A \) has 3 columns and matrix \( B \) has 3 rows. - Since \( 3 = 3 \), the multiplication \( AB \) can be performed. 4. **Check if \( BA \) can be multiplied**: - For the multiplication \( BA \) to be valid, the number of columns in matrix \( B \) must equal the number of rows in matrix \( A \). - Here, matrix \( B \) has 2 columns and matrix \( A \) has 2 rows. - Since \( 2 = 2 \), the multiplication \( BA \) can also be performed. 5. **Conclusion**: - Both products \( AB \) and \( BA \) can be multiplied. ### Summary: - The order of matrix \( A \) is \( 2 \times 3 \). - The order of matrix \( B \) is \( 3 \times 2 \). - \( AB \) can be multiplied (resulting in a \( 2 \times 2 \) matrix). - \( BA \) can also be multiplied (resulting in a \( 3 \times 3 \) matrix).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)] , then the determinant value of BA is

If A= [{:(,1,2),(,3,-4),(,5,6):}]and B=[{:(,4,5,6),(,7,-8,2):}] will AB be equal to BA. Also find AB & BA.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

Expand |{:(1,2,3),(4,6,2),(5,9,4):}|

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The matrix A=[{:(0,0,2),(0,2,0),(2,0,0):}] is: a) scalar matrix b) di...

    Text Solution

    |

  2. The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) s...

    Text Solution

    |

  3. If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

    Text Solution

    |

  4. If A is any m xx n matrix and B is a matrix such that AB and BA are bo...

    Text Solution

    |

  5. If A=[{:(3,-x),(y,5):}] and A=A' then

    Text Solution

    |

  6. If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal ...

    Text Solution

    |

  7. If A=[a(ij)](2xx2) where a(ij)={{:(1",",if, I ne j),(0",", if,i=j):} t...

    Text Solution

    |

  8. The number of all possible matrices of order 3 x 3 with each entry 0 o...

    Text Solution

    |

  9. If A and B are square matrices of same order, then (A+B) (A-B) is equa...

    Text Solution

    |

  10. If A is a square matrix such that A^(2)=I then (A+I)^(3)+(A-I)^(3)-7A ...

    Text Solution

    |

  11. If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I(2), then the general ...

    Text Solution

    |

  12. If A =[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I(2)...

    Text Solution

    |

  13. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  14. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  15. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  16. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  17. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  18. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  19. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  20. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |