Home
Class 12
MATHS
If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0...

If `A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}]` then `A^(2)-6A` is equal to :

A

3I

B

`-5I`

C

`5I`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A^2 - 6A \) where \( A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \] Using the formula for matrix multiplication: \[ A^2 = \begin{pmatrix} (4 \times 4 + 1 \times 3) & (4 \times 1 + 1 \times 2) \\ (3 \times 4 + 2 \times 3) & (3 \times 1 + 2 \times 2) \end{pmatrix} \] Calculating each element: - First row, first column: \( 4 \times 4 + 1 \times 3 = 16 + 3 = 19 \) - First row, second column: \( 4 \times 1 + 1 \times 2 = 4 + 2 = 6 \) - Second row, first column: \( 3 \times 4 + 2 \times 3 = 12 + 6 = 18 \) - Second row, second column: \( 3 \times 1 + 2 \times 2 = 3 + 4 = 7 \) So, \[ A^2 = \begin{pmatrix} 19 & 6 \\ 18 & 7 \end{pmatrix} \] ### Step 2: Calculate \( 6A \) Now we calculate \( 6A \): \[ 6A = 6 \times \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 6 \times 4 & 6 \times 1 \\ 6 \times 3 & 6 \times 2 \end{pmatrix} = \begin{pmatrix} 24 & 6 \\ 18 & 12 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - 6A \) Now we subtract \( 6A \) from \( A^2 \): \[ A^2 - 6A = \begin{pmatrix} 19 & 6 \\ 18 & 7 \end{pmatrix} - \begin{pmatrix} 24 & 6 \\ 18 & 12 \end{pmatrix} \] Calculating the subtraction element-wise: - First row, first column: \( 19 - 24 = -5 \) - First row, second column: \( 6 - 6 = 0 \) - Second row, first column: \( 18 - 18 = 0 \) - Second row, second column: \( 7 - 12 = -5 \) So, \[ A^2 - 6A = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix} \] ### Step 4: Factor out \(-5\) We can factor out \(-5\): \[ A^2 - 6A = -5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -5I \] ### Final Answer Thus, the final result is: \[ A^2 - 6A = -5I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

If A = [{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I_(2) then value of x is

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A is any m xx n matrix and B is a matrix such that AB and BA are bo...

    Text Solution

    |

  2. If A=[{:(3,-x),(y,5):}] and A=A' then

    Text Solution

    |

  3. If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal ...

    Text Solution

    |

  4. If A=[a(ij)](2xx2) where a(ij)={{:(1",",if, I ne j),(0",", if,i=j):} t...

    Text Solution

    |

  5. The number of all possible matrices of order 3 x 3 with each entry 0 o...

    Text Solution

    |

  6. If A and B are square matrices of same order, then (A+B) (A-B) is equa...

    Text Solution

    |

  7. If A is a square matrix such that A^(2)=I then (A+I)^(3)+(A-I)^(3)-7A ...

    Text Solution

    |

  8. If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I(2), then the general ...

    Text Solution

    |

  9. If A =[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I(2)...

    Text Solution

    |

  10. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  11. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  12. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  13. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  14. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  15. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  16. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  17. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  18. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  19. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  20. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |