Home
Class 12
MATHS
If A=[a(ij)](2xx2) where a(ij)={{:(1",",...

If `A=[a_(ij)]_(2xx2)` where `a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):}` then `A^(2)` is equal to

A

I

B

A

C

O

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the given matrix \( A \), we will follow these steps: ### Step 1: Define the matrix \( A \) The matrix \( A \) is defined as follows: \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \] where: - \( a_{ij} = 1 \) if \( i \neq j \) - \( a_{ij} = 0 \) if \( i = j \) For a \( 2 \times 2 \) matrix, we can determine the elements: - \( a_{11} = 0 \) (since \( i = j \)) - \( a_{12} = 1 \) (since \( i \neq j \)) - \( a_{21} = 1 \) (since \( i \neq j \)) - \( a_{22} = 0 \) (since \( i = j \)) Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 3: Perform the matrix multiplication We calculate the elements of \( A^2 \): 1. **First row, first column**: \[ (0 \cdot 0) + (1 \cdot 1) = 0 + 1 = 1 \] 2. **First row, second column**: \[ (0 \cdot 1) + (1 \cdot 0) = 0 + 0 = 0 \] 3. **Second row, first column**: \[ (1 \cdot 0) + (0 \cdot 1) = 0 + 0 = 0 \] 4. **Second row, second column**: \[ (1 \cdot 1) + (0 \cdot 0) = 1 + 0 = 1 \] Putting these results together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Conclusion The matrix \( A^2 \) is the identity matrix \( I \): \[ A^2 = I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If A=[a_("ij")]_(4xx4) , such that a_("ij")={(2",","when "i=j),(0",","when "i ne j):} , then {("det (adj (adj A))")/(7)} is (where {*} represents fractional part function)

If A=[a_("ij")]_(4xx4) , such that a_("ij")={(2",","when "i=j),(0",","when "i ne j):} , then {("det (adj (adj A))")/(7)} is (where {*} represents fractional part function)

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(3,-x),(y,5):}] and A=A' then

    Text Solution

    |

  2. If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal ...

    Text Solution

    |

  3. If A=[a(ij)](2xx2) where a(ij)={{:(1",",if, I ne j),(0",", if,i=j):} t...

    Text Solution

    |

  4. The number of all possible matrices of order 3 x 3 with each entry 0 o...

    Text Solution

    |

  5. If A and B are square matrices of same order, then (A+B) (A-B) is equa...

    Text Solution

    |

  6. If A is a square matrix such that A^(2)=I then (A+I)^(3)+(A-I)^(3)-7A ...

    Text Solution

    |

  7. If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I(2), then the general ...

    Text Solution

    |

  8. If A =[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I(2)...

    Text Solution

    |

  9. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  10. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  11. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  12. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  13. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  14. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  15. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  16. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  17. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  18. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  19. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  20. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |