Home
Class 12
MATHS
If A =[{:((1)/(3),2),(0,2x-3):}] and B =...

If A =`[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I_(2)` then value of x is

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the product of matrices \( A \) and \( B \) equals the identity matrix \( I_2 \). Given: \[ A = \begin{pmatrix} \frac{1}{3} & 2 \\ 0 & 2x - 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix} \] and \( AB = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate the product \( AB \) We will multiply matrices \( A \) and \( B \). \[ AB = \begin{pmatrix} \frac{1}{3} & 2 \\ 0 & 2x - 3 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix} \] Using the matrix multiplication formula, we compute each element of the resulting matrix: 1. First row, first column: \[ \frac{1}{3} \cdot 3 + 2 \cdot 0 = 1 + 0 = 1 \] 2. First row, second column: \[ \frac{1}{3} \cdot 6 + 2 \cdot (-1) = 2 - 2 = 0 \] 3. Second row, first column: \[ 0 \cdot 3 + (2x - 3) \cdot 0 = 0 + 0 = 0 \] 4. Second row, second column: \[ 0 \cdot 6 + (2x - 3) \cdot (-1) = 0 - (2x - 3) = -2x + 3 \] Thus, we have: \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & -2x + 3 \end{pmatrix} \] ### Step 2: Set the product equal to the identity matrix We know that: \[ AB = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the equations: 1. From the first row, first column: \( 1 = 1 \) (true, no information). 2. From the first row, second column: \( 0 = 0 \) (true, no information). 3. From the second row, first column: \( 0 = 0 \) (true, no information). 4. From the second row, second column: \( -2x + 3 = 1 \). ### Step 3: Solve for \( x \) Now we solve the equation: \[ -2x + 3 = 1 \] Subtract 3 from both sides: \[ -2x = 1 - 3 \] \[ -2x = -2 \] Now, divide by -2: \[ x = 1 \] ### Conclusion The value of \( x \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

Solve [(1,2),(0,0)] [(x,2),(3,3)]=[(7,0),(1,0)] , and find the value of x.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A is a square matrix such that A^(2)=I then (A+I)^(3)+(A-I)^(3)-7A ...

    Text Solution

    |

  2. If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I(2), then the general ...

    Text Solution

    |

  3. If A =[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I(2)...

    Text Solution

    |

  4. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  5. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  6. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  7. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  8. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  9. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  10. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  11. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  12. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  13. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  14. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  15. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  16. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  17. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  18. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  19. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  20. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |