Home
Class 12
MATHS
If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)(...

If `A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}]` then A-B is equal to

A

I

B

`(1)/(2)I`

C

O

D

2I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( A - B \) for the given matrices \( A \) and \( B \), we will follow these steps: ### Step 1: Write down the matrices \( A \) and \( B \) Given: \[ A = \frac{1}{\pi} \begin{pmatrix} \sin^{-1}(pix) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & \cot^{-1}(pix) \end{pmatrix} \] \[ B = \frac{1}{\pi} \begin{pmatrix} -\cos^{-1}(pix) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & -\tan^{-1}(pix) \end{pmatrix} \] ### Step 2: Subtract the matrices \( A \) and \( B \) Now, we will compute \( A - B \): \[ A - B = \frac{1}{\pi} \begin{pmatrix} \sin^{-1}(pix) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & \cot^{-1}(pix) \end{pmatrix} - \frac{1}{\pi} \begin{pmatrix} -\cos^{-1}(pix) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & -\tan^{-1}(pix) \end{pmatrix} \] ### Step 3: Combine the matrices Factoring out \( \frac{1}{\pi} \): \[ A - B = \frac{1}{\pi} \left( \begin{pmatrix} \sin^{-1}(pix) + \cos^{-1}(pix) & 0 \\ 0 & \cot^{-1}(pix) + \tan^{-1}(pix) \end{pmatrix} \right) \] ### Step 4: Simplify the expressions Using the identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \): \[ A - B = \frac{1}{\pi} \begin{pmatrix} \frac{\pi}{2} & 0 \\ 0 & \frac{\pi}{2} \end{pmatrix} \] ### Step 5: Factor out \( \frac{1}{\pi} \) Now, we can factor out \( \frac{1}{\pi} \): \[ A - B = \frac{1}{\pi} \cdot \frac{\pi}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 6: Final result Thus, we have: \[ A - B = \frac{1}{2} I \] where \( I \) is the identity matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and B=1/pi[-cot^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)-tan^(-1)(pix)] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A =[{:((1)/(3),2),(0,2x-3):}] and B =[{:(3,6),(0,-1):}] and AB=I(2)...

    Text Solution

    |

  2. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  3. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  4. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  5. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  7. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  8. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  9. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  10. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  11. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  12. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  13. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  14. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  15. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  16. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  17. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  18. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  19. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  20. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |