Home
Class 12
MATHS
If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alp...

If `A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}]` then

A

`alpha=a^(2)+b^(2), beta= ab`

B

`alpha= a^(2)+b^(2), beta=2ab`

C

`alpha=a^(2)+b^(2), beta= a^(2)-b^(2)`

D

`alpha=2ab, beta=a^(2)+b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the elements of the matrix \( A \) and the elements of the matrix \( A^2 \). Given: \[ A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] ### Step 2: Perform the multiplication Using the rule of matrix multiplication (the dot product of rows and columns), we calculate each element of \( A^2 \): 1. **Element (1,1)**: \[ a \cdot a + b \cdot b = a^2 + b^2 \] 2. **Element (1,2)**: \[ a \cdot b + b \cdot a = ab + ba = 2ab \] 3. **Element (2,1)**: \[ b \cdot a + a \cdot b = ba + ab = 2ab \] 4. **Element (2,2)**: \[ b \cdot b + a \cdot a = b^2 + a^2 \] Thus, we have: \[ A^2 = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} \] ### Step 3: Set the matrices equal to each other We know that: \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] So we can equate the corresponding elements: 1. From the (1,1) position: \[ \alpha = a^2 + b^2 \] 2. From the (1,2) position: \[ \beta = 2ab \] ### Conclusion We have derived the relationships: \[ \alpha = a^2 + b^2 \quad \text{and} \quad \beta = 2ab \] ### Final Answer Thus, the correct relationships are: - \( \alpha = a^2 + b^2 \) - \( \beta = 2ab \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

A nucleus with Z =92 emits the following in a sequence: alpha,beta^(-),beta^(-),alpha,alpha,alpha,alpha,alpha,beta^(-),beta^(-),alpha,beta^(+),beta^(+),alpha . The Z of the resulting nucleus is

If x=a + b, y= a alpha + b beta, z= a beta + b alpha , where alpha and beta are complex cube roots of unity, then show that xyz = a^(3) + b^(3)

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If alpha != beta but, alpha^(2) = 4alpha - 2 and beta^(2) = 4beta - 2 then the quadratic equation with roots (alpha)/(beta) and (beta)/(alpha) is

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

Factorise alpha^2 +beta^2 + alpha beta

If x = a + b , y = a alpha + b beta , z = a beta + b alpha where alpha and beta are complex cube roots of unity , show that x^(3) +y^(3) + z^(3) = 3 (a^(3)+ b^(3))

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta -3 then the equation having alpha // beta and beta // alpha as its roots is :

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |