Home
Class 12
MATHS
If A=[{:(1,a),(0,1):}] then A^(n) (where...

If `A=[{:(1,a),(0,1):}]` then `A^(n)` (where `n in N`) is equal to

A

`[{:(1,na),(0,1):}]`

B

`[{:(1,na),(1,0):}]`

C

`[{:(n,na),(0,n):}]`

D

`[{:(1,n^(2)a),(0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^n \) for the matrix \( A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \), we will calculate the powers of \( A \) step by step. ### Step 1: Calculate \( A^2 \) We start by multiplying \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + a \cdot 0 = 1 \) - First row, second column: \( 1 \cdot a + a \cdot 1 = a + a = 2a \) - Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot a + 1 \cdot 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 2a \cdot 0 = 1 \) - First row, second column: \( 1 \cdot a + 2a \cdot 1 = a + 2a = 3a \) - Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot a + 1 \cdot 1 = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 3a \\ 0 & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 3a \\ 0 & 1 \end{pmatrix} \) It appears that \( A^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix} \). ### Step 4: Generalize the Result Thus, we can generalize that: \[ A^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix} \] ### Final Answer The final result is: \[ A^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

lim_(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ ) is equal to

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

If x^2-2xcos theta+1=0 , then the value of x^(2n)-2x^n cosntheta+1, n in N is equal to

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |