Home
Class 12
MATHS
If A=[{:(1,1),(1,1):}] and n in N then A...

If `A=[{:(1,1),(1,1):}] and n in N` then `A^(n)` is qual to

A

nA

B

2nA

C

`2^(n-1)A`

D

`2^(n)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^n \) where \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) and \( n \) is a natural number. ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \times A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] To compute this, we multiply the rows of the first matrix by the columns of the second matrix: - First row, first column: \( 1 \times 1 + 1 \times 1 = 2 \) - First row, second column: \( 1 \times 1 + 1 \times 1 = 2 \) - Second row, first column: \( 1 \times 1 + 1 \times 1 = 2 \) - Second row, second column: \( 1 \times 1 + 1 \times 1 = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] 2. **Calculate \( A^3 \)**: \[ A^3 = A^2 \times A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] Again, we multiply: - First row, first column: \( 2 \times 1 + 2 \times 1 = 4 \) - First row, second column: \( 2 \times 1 + 2 \times 1 = 4 \) - Second row, first column: \( 2 \times 1 + 2 \times 1 = 4 \) - Second row, second column: \( 2 \times 1 + 2 \times 1 = 4 \) Thus, \[ A^3 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \] 3. **Identify the pattern**: From the calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = 2 \cdot A \) - \( A^3 = 4 \cdot A \) This suggests that: \[ A^n = 2^{n-1} \cdot A \] 4. **Generalize the formula**: Therefore, we can express \( A^n \) as: \[ A^n = 2^{n-1} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] 5. **Final result**: Thus, the final answer is: \[ A^n = 2^{n-1} \cdot A \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

For each n in N, n(n+1) (2n+1) is divisible by

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |