Home
Class 12
MATHS
If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then...

If `A=[{:(1,0,0),(0,1,0),(a,b,-1):}]` then `A^(2)` is equal to

A

a) A

B

b) `-A`

C

c) a null matrix

D

d) a unit matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \( A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step 1: Write down the matrix \( A \) \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \] ### Step 2: Set up the multiplication \( A^2 = A \cdot A \) \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \] ### Step 3: Calculate the elements of \( A^2 \) - **First row, first column:** \[ 1 \cdot 1 + 0 \cdot 0 + 0 \cdot a = 1 \] - **First row, second column:** \[ 1 \cdot 0 + 0 \cdot 1 + 0 \cdot b = 0 \] - **First row, third column:** \[ 1 \cdot 0 + 0 \cdot 0 + 0 \cdot -1 = 0 \] - **Second row, first column:** \[ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot a = 0 \] - **Second row, second column:** \[ 0 \cdot 0 + 1 \cdot 1 + 0 \cdot b = 1 \] - **Second row, third column:** \[ 0 \cdot 0 + 1 \cdot 0 + 0 \cdot -1 = 0 \] - **Third row, first column:** \[ a \cdot 1 + b \cdot 0 + (-1) \cdot a = a - a = 0 \] - **Third row, second column:** \[ a \cdot 0 + b \cdot 1 + (-1) \cdot b = b - b = 0 \] - **Third row, third column:** \[ a \cdot 0 + b \cdot 0 + (-1) \cdot -1 = 1 \] ### Step 4: Combine the results to form the resulting matrix Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Conclusion Thus, \( A^2 \) is equal to the identity matrix \( I \): \[ A^2 = I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A= [(1,0,1), (0,0,1),(a,b,2)] , then a I+b A+2A^2 equals (a) A (b) - A (c) a b\ A (d) none of these

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A = [(1,0),(1/2,1)] , then A^100 is equal to

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t equals (A) A (B) -A^t (C) A^t (D) 2A^2

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |