Home
Class 12
MATHS
If the matrix [{:(0,-1,3x),(1,y,-5),(-6,...

If the matrix `[{:(0,-1,3x),(1,y,-5),(-6,5,0):}]` is skew- symmetric, then

A

`x=-2,y=0`

B

`x=2,y=0`

C

`x=-2,y=1`

D

`x=2,y=-2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( x \) and \( y \) such that the matrix \[ A = \begin{pmatrix} 0 & -1 & 3x \\ 1 & y & -5 \\ -6 & 5 & 0 \end{pmatrix} \] is skew-symmetric, we follow these steps: ### Step 1: Understand the property of skew-symmetric matrices A matrix \( A \) is skew-symmetric if \( A^T = -A \), where \( A^T \) is the transpose of \( A \). ### Step 2: Find the transpose of the matrix \( A \) The transpose of matrix \( A \) is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} 0 & 1 & -6 \\ -1 & y & 5 \\ 3x & -5 & 0 \end{pmatrix} \] ### Step 3: Set up the equation \( A^T = -A \) Now we set \( A^T \) equal to \( -A \): \[ \begin{pmatrix} 0 & 1 & -6 \\ -1 & y & 5 \\ 3x & -5 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -3x \\ 1 & -y & 5 \\ 6 & -5 & 0 \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equation \( A^T = -A \), we can equate the corresponding elements: 1. From the (1,2) entry: \( 1 = -1 \) (which is not useful) 2. From the (2,1) entry: \( -1 = 1 \) (which is also not useful) 3. From the (1,3) entry: \( -6 = -3x \) 4. From the (2,2) entry: \( y = -y \) 5. From the (3,1) entry: \( 3x = 6 \) ### Step 5: Solve for \( y \) From the equation \( y = -y \): \[ y + y = 0 \implies 2y = 0 \implies y = 0 \] ### Step 6: Solve for \( x \) From the equation \( -6 = -3x \): \[ -6 = -3x \implies 6 = 3x \implies x = 2 \] ### Final Result Thus, the values of \( x \) and \( y \) are: \[ x = 2, \quad y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

(i) Show that the matrix A=[{:(1,-1,5),(-1,2,1),(5,1,3):}] is a symmetric matrix. (ii) Show that the matrix A-[{:(0 ,1,-1),(-1, 2, 1),( 1,-1, 0):}] is a skew symmetric matrix.

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

If the matrix A = [[0,a,-3],[2,0,-1],[b,1,0]] is skew symmetric, find the value of a and b .

If the matrix A=[[0,a,-3],[2,0,-1],[b,1,0]] is skew-symmetric, find the values of a ,\ b .

If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then the value of (a+b+c)^(2) is

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

The matrix [(0, 5,-7),(-5, 0, 11),( 7,-11, 0)] is (a) a skew-symmetric matrix (b) a symmetric matrix (c) a diagonal matrix (d) an upper triangular matrix

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |