Home
Class 12
MATHS
On using the elementary row operation R...

On using the elementary row operation `R_(1) to R_(1)-3R_(2)` in the matrix equation `[{:(4,2),(3,3):}]=[{:(1,2),(0,3):}] [{:(2,0),(1,1):}]` we get

A

`[{:(-5,-7),(3,3):}]=[{:(1,-7),(0,3):}] [{:(2,0),(1,1):}]`

B

`[{:(-5,-7),(3,3):}]=[{:(1,2),(0,3):}] [{:(-1,-3),(1,1):}]`

C

`[{:(-5,-7),(3,3):}]=[{:(1,2),(1,-7):}] [{:(2,0),(1,1):}]`

D

`[{:(4,2),(-5-,7):}]=[{:(1,2),(-3,-3):}] [{:(2,0),(1,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given matrix equation using the elementary row operation \( R_1 \to R_1 - 3R_2 \), we will follow these steps: ### Step 1: Write down the matrix equation The given matrix equation is: \[ \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Compute the product of the matrices on the right-hand side First, we need to compute the product of the two matrices on the right-hand side: \[ \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 2 + 2 \cdot 1 = 2 + 2 = 4 \) - First row, second column: \( 1 \cdot 0 + 2 \cdot 1 = 0 + 2 = 2 \) - Second row, first column: \( 0 \cdot 2 + 3 \cdot 1 = 0 + 3 = 3 \) - Second row, second column: \( 0 \cdot 0 + 3 \cdot 1 = 0 + 3 = 3 \) Thus, the product is: \[ \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix} \] ### Step 3: Apply the row operation \( R_1 \to R_1 - 3R_2 \) Now we apply the row operation \( R_1 \to R_1 - 3R_2 \): - For the first element of the first row: \[ 4 - 3 \cdot 3 = 4 - 9 = -5 \] - For the second element of the first row: \[ 2 - 3 \cdot 3 = 2 - 9 = -7 \] The second row remains unchanged: \[ \begin{pmatrix} 3 & 3 \end{pmatrix} \] ### Step 4: Write the new matrix after the operation After performing the row operation, the new matrix becomes: \[ \begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix} \] ### Step 5: Write down the right-hand side after the operation Now, we need to apply the same row operation to the right-hand side of the equation: The original right-hand side is: \[ \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \] Applying \( R_1 \to R_1 - 3R_2 \): - For the first element of the first row: \[ 1 - 3 \cdot 0 = 1 \] - For the second element of the first row: \[ 2 - 3 \cdot 3 = 2 - 9 = -7 \] The second row remains unchanged: \[ \begin{pmatrix} 0 & 3 \end{pmatrix} \] Thus, the new right-hand side matrix becomes: \[ \begin{pmatrix} 1 & -7 \\ 0 & 3 \end{pmatrix} \] ### Final Result After performing the row operation, the new equation is: \[ \begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -7 \\ 0 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

On using row operation R_(1)rArrR_(1)-3R_(2) in the following matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}] we have

On usign elementry column operation C_(2)rArrC_(2)-2C_(1) in the following matrix equation [{:(1,-3),(2,4):}]=[{:(1,01),(0,1):}][{:(3,1),(2,4):}] , we have

Apply elementary transformation R_2->R_2-3R_1 in the matrix equation [(11,-6),( 6,-4)]=[(1, 3), (0, 2)][(2, 0),( 3,-2)]

Use elementary column operation C_2->C_2+2C_1 in the following matrix equation : [(2,1),(2, 0)] = [(3,1),(2,0)][(1,0),(-1, 1)]

Use elementary column operation C_2->C_2+2C_1 in the following matrix equation : [(2 ,1),( 2, 0)]=[(3 ,1),( 2 ,0)][(1 ,0),(-1, 1)]

Use elementary column operation C2 -> C2 -2C1 in the matrix equation [[4 ,2],[ 3, 3]]=[[1, 2 ],[0, 3]][[2 ,0],[ 1 ,1]]

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

Find the inverse using elementary row transformations: [0 1 2 1 2 3 3 1 1]

Using elementary row operations, find the inverse of the following matrix: [[2,5],[1, 3]]

By using elementary operations, find the inverse of the matrix A=[[1, 2], [2, -1]] .

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |