Home
Class 12
MATHS
If matrix A=[a(ij)](2x2), where a(ij)={{...

If matrix `A=[a_(ij)]_(2x2),` where `a_(ij)={{:(1"," , i ne j),(0",", i=j):}` then `A^(3)` is equal to

A

A

B

I

C

O

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^3 \) for the matrix \( A \) defined as follows: \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) First, we need to calculate \( A^2 \) by multiplying matrix \( A \) with itself: \[ A^2 = A \times A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] Using the rule of matrix multiplication, we compute each entry: - First row, first column: \[ 0 \times 0 + 1 \times 1 = 0 + 1 = 1 \] - First row, second column: \[ 0 \times 1 + 1 \times 0 = 0 + 0 = 0 \] - Second row, first column: \[ 1 \times 0 + 0 \times 1 = 0 + 0 = 0 \] - Second row, second column: \[ 1 \times 1 + 0 \times 0 = 1 + 0 = 1 \] Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \) by multiplying \( A \) with \( A^2 \): \[ A^3 = A \times A^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Again, we compute each entry: - First row, first column: \[ 0 \times 1 + 1 \times 0 = 0 + 0 = 0 \] - First row, second column: \[ 0 \times 0 + 1 \times 1 = 0 + 1 = 1 \] - Second row, first column: \[ 1 \times 1 + 0 \times 0 = 1 + 0 = 1 \] - Second row, second column: \[ 1 \times 0 + 0 \times 1 = 0 + 0 = 0 \] Thus, we have: \[ A^3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Conclusion We find that: \[ A^3 = A \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|65 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (ASSERTION AND REASON)|11 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

A matrix A=[a_(ij)]_(mxxn) is

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

ICSE-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[{:(1,2),(2,3):}] and A^(2)-xA=I(2) then the value of x is

    Text Solution

    |

  2. If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi))...

    Text Solution

    |

  3. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  4. If A=[{:(1,a),(0,1):}] then A^(n) (where n in N) is equal to

    Text Solution

    |

  5. If A=[{:(1,1),(1,1):}] and n in N then A^(n) is qual to

    Text Solution

    |

  6. If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA, then the value of k is

    Text Solution

    |

  7. If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

    Text Solution

    |

  8. If A and B are matrices of same order, then (AB'-BA') is a

    Text Solution

    |

  9. If A and B are symmetric matrices of same order, then AB-BA is a

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is a positive even integer, then...

    Text Solution

    |

  12. If A is askew symmetric matrix and n is an odd positive integer, then ...

    Text Solution

    |

  13. If A is a skew-symmetric matrix such that (A^(n))'=kA^(n), n in N, the...

    Text Solution

    |

  14. If A and Bare square matrices of same order such that AB = A and BA = ...

    Text Solution

    |

  15. The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a a) diagonal matrix b)...

    Text Solution

    |

  16. If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, th...

    Text Solution

    |

  17. On using the elementary row operation R(1) to R(1)-3R(2) in the matri...

    Text Solution

    |

  18. If matrix A=[a(ij)](2x2), where a(ij)={{:(1"," , i ne j),(0",", i=j):}...

    Text Solution

    |

  19. If A is square matrix such that A^(2)=A, then (I-A)^(3)+A is equal to

    Text Solution

    |

  20. If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then ...

    Text Solution

    |