Home
Class 12
MATHS
If y=sin^(-1)x, prove that (1-x^2)(d^2y)...

If `y=sin^(-1)x`, prove that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=e^(m sin^(-1)x) prove that (1-x^(2))((d^(2)y)/(dx^(2)))-x(dy)/(dx)=m^(2)y

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0