Home
Class 12
MATHS
If x=sin t sqrt(cos2t) and y=cos tsqrt(s...

If `x=sin t sqrt(cos2t)` and `y=cos tsqrt(sin2t)`, find `(dy)/(dx)` at `t=(pi)/(4)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=2cott+cos2t,y=2sint-sin2t,"find "(dy)/(dx)"at t"=(pi)/(4)

If x=3sin t-sin3t,y=3cos t-cos3t, find (dy)/(dx) at t=(pi)/(3)

Find (dy)/(dx) if x=asqrt(cos2t) cost and y=asqrt(cos2t) sint then, find ((dy)/(dx)|)_(t=pi//6)

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

If x=cos t(3-2cos^(2)t) and y=sin t(3-2s epsilon^(2)t) find the value of (dy)/(dx) at t=(pi)/(4)

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)