Home
Class 12
MATHS
The sum of the series (C(101,1))/(C(101,...

The sum of the series `(C(101,1))/(C(101,0)) + (2C(101,2))/(C(101,1))+(3C(101,3))/(C(101,2))+...+(101C(101,101))/(C(101,100))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

C(10,8)+C(10,1)=

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

Compare which of the two is greater (100)^((10)/(10)) and (101)^((1)/(101))

C(10,0)+C(10,1)3+C(10,2)9+C(10,3)27+ tll 11 terms

The total number of different terms in the product (.^(101)C_(0) - .^(101)C_(1)x+.^(101)C_(2)x^(2)-"….."-.^(101)C_(101)x^(101))(1+x+x^(2)+"…."+x^(100))^(101) is "____" .

What is the value of ((1001)_(2)^((11)_(2))-(101)_(2)^((11)_(2)))/((1001)_(2)^((10)_(2))+(1001)_(2)^((01)_(2))(101)_(2)^((01)_(2))+(101)_(2)^((10)_(2)))?

The value of C(100,95)+C(101,96)+....C(120,115) is

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)); then (f(101))/(f'(101))=