Home
Class 11
MATHS
If |z1| = 1 , |z2|=2,|z3|=3 and |9z1z2...

If `|z_1| = 1 , |z_2|=2,|z_3|=3 and |9z_1z_2+4z_1z_2+z_2z_3|=12` , then `|z_1+z_2+z_3|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to :

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 and |9z_(1)z_(2)+4z_(1)z_(2)+z_(2)z_(3)|=12, then |z_(1)+z_(2)+z_(3)| is equal to

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3, and |9z_(1)z_(2)+4z_(1)z_(3)+z_(2)z_(3)|=12 then find the value of |z_(1)+z_(2)+z_(3)|

Let z_1,z_2,z_3 be three complex numbers such that |z_1|=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1. Find |9z_1z_2+4z_1z_3+z_2z_3| .

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If z_(1),z_(2),z_(3) are complex numbers such that |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 then |z_(1)+z_(2)+z_(3)| is equal to