Home
Class 12
MATHS
int(0)^((pi)/(2))(sqrt(sinx))/(sqrt(sinx...

`int_(0)^((pi)/(2))(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_((pi)/(18))^((4pi)/(9))(2sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx= . . .

int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx=(k)/(4) , then the value of k equals

int_(0)^(pi//2)sqrt(1+sinx)dx

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

int_(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+sqrt(sinx)))dx=?

If int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(cosx)+sqrt(sinx))dx=(k)/(4) , then value of k equals

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) - I_(2) equal to ?