Home
Class 11
MATHS
If z =x +iy satisfies |z+1-i|=|z-1+i| th...

If z =x +iy satisfies |z+1-i|=|z-1+i| then

A

(a) y=x

B

(b) y=-x

C

(c) x-y+1=0

D

(d) x+y-1=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( z = x + iy \) satisfies \( |z + 1 - i| = |z - 1 + i| \), we can follow these steps: ### Step 1: Substitute \( z \) Substituting \( z = x + iy \) into the equation gives: \[ | (x + iy) + 1 - i | = | (x + iy) - 1 + i | \] This simplifies to: \[ | (x + 1) + (y - 1)i | = | (x - 1) + (y + 1)i | \] ### Step 2: Express Magnitudes The magnitudes can be expressed as: \[ \sqrt{(x + 1)^2 + (y - 1)^2} = \sqrt{(x - 1)^2 + (y + 1)^2} \] ### Step 3: Square Both Sides Squaring both sides to eliminate the square roots gives: \[ (x + 1)^2 + (y - 1)^2 = (x - 1)^2 + (y + 1)^2 \] ### Step 4: Expand Both Sides Expanding both sides: - Left Side: \[ (x + 1)^2 = x^2 + 2x + 1 \] \[ (y - 1)^2 = y^2 - 2y + 1 \] So, the left side becomes: \[ x^2 + 2x + 1 + y^2 - 2y + 1 = x^2 + y^2 + 2x - 2y + 2 \] - Right Side: \[ (x - 1)^2 = x^2 - 2x + 1 \] \[ (y + 1)^2 = y^2 + 2y + 1 \] So, the right side becomes: \[ x^2 - 2x + 1 + y^2 + 2y + 1 = x^2 + y^2 - 2x + 2y + 2 \] ### Step 5: Set the Expanded Forms Equal Setting the expanded forms equal gives: \[ x^2 + y^2 + 2x - 2y + 2 = x^2 + y^2 - 2x + 2y + 2 \] ### Step 6: Simplify the Equation Cancelling \( x^2 + y^2 + 2 \) from both sides results in: \[ 2x - 2y = -2x + 2y \] ### Step 7: Rearranging the Terms Rearranging gives: \[ 2x + 2x = 2y + 2y \] This simplifies to: \[ 4x = 4y \] ### Step 8: Final Result Dividing both sides by 4 gives: \[ x = y \] ### Conclusion Thus, the solution to the equation is \( y = x \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If z = x +iy satisfies |z+1|=1 then

If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

If z satisfies |z+1| lt |z-2| , then w=3z+2+i

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

If z=x+iy is a complex number satisfying |z+i/2|^2=|z-i/2|^2 , then the locus of z is

If z_1a n dz_2 both satisfy z+ z =2|z-1| and a r g(z_1-z_2)=pi/4 , then find I m(z_1+z_2) .

Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The maximum value of |2i z+4| is equal to _______.

Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The maximum value of |2z-4i| is equal to _______.

If complex number z=x +iy satisfies the equation Re (z+1) = |z-1| , then prove that z lies on y^(2) = 4x .

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

ICSE-COMPLEX NUMBER -MULTIPLE CHOICE QUESTIONS
  1. The value of 1+i+i^(2)+... + i^(n) is (i) positive (ii) negative (i...

    Text Solution

    |

  2. If z = x +iy satisfies |z+1|=1 then

    Text Solution

    |

  3. If z =x +iy satisfies |z+1-i|=|z-1+i| then

    Text Solution

    |

  4. Number of solutions of the equation z^(2)+|z|^(2)=0 is (i) 1 (ii) 2 (...

    Text Solution

    |

  5. The amplitude of sin (pi)/(5) +i(1-cos"" (pi)/(5)) is

    Text Solution

    |

  6. The multiplicative inverse of 3+4i is

    Text Solution

    |

  7. If z = barz then z lies on

    Text Solution

    |

  8. The principal argument (1+isqrt(3))^(2) is

    Text Solution

    |

  9. The polar form of 1+isqrt(3) is

    Text Solution

    |

  10. The complex numbers sin x +i cos 2x and cos x -i sin 2x are conjugate ...

    Text Solution

    |

  11. The real value of alpha for which the expression (1- isin alpha)/(1+2i...

    Text Solution

    |

  12. If z =x +iy lies in the third quadrant then (barz)/(z) also lies in th...

    Text Solution

    |

  13. The value of (z+3) (barz+3) is equal to (i) |z +3|^(2) (ii) |z-3| (i...

    Text Solution

    |

  14. If ((1+i)/(1-i))^(x)=1 AA n in N is (i) x = 2n+1 (ii) x =4n (iii) x=...

    Text Solution

    |

  15. The argument of (1+i)/(1-i) is (i) 0 (ii) -(pi)/(2) (iii) (pi)/(2) (...

    Text Solution

    |

  16. If (1+2i) (2+3i)(3+4i)=x+iy,x,y in R then x^(2)+y^(2) is

    Text Solution

    |

  17. The polar form of sin 75^(@)+i cos 75^(@) is

    Text Solution

    |

  18. The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i))is

    Text Solution

    |

  19. If a +ib = ((x+i)^(2))/(2x-1) then a^(2)+b^(2) is equal to

    Text Solution

    |

  20. If z=x +iy is purely real number such that x lt 0 then arg (z) is

    Text Solution

    |