Home
Class 11
MATHS
The argument of (1+i)/(1-i) is (i) 0 (i...

The argument of `(1+i)/(1-i)` is (i) 0 (ii) `-(pi)/(2)` (iii) `(pi)/(2)` (iv) `pi`

A

0

B

`-(pi)/(2)`

C

`(pi)/(2)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{1+i}{1-i}\), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ z = \frac{1+i}{1-i} \] ### Step 2: Rationalize the denominator To simplify, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] ### Step 3: Expand the numerator and denominator Now, we expand both the numerator and the denominator: - The numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] - The denominator: \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] ### Step 4: Simplify the expression Now we can simplify \(z\): \[ z = \frac{2i}{2} = i \] ### Step 5: Find the argument The argument of a complex number \(z = x + iy\) is given by: \[ \text{arg}(z) = \tan^{-1}\left(\frac{y}{x}\right) \] For \(z = i\), we have \(x = 0\) and \(y = 1\): \[ \text{arg}(i) = \tan^{-1}\left(\frac{1}{0}\right) \] Since \(\frac{1}{0}\) is undefined, we know that the argument is: \[ \text{arg}(i) = \frac{\pi}{2} \] ### Conclusion Thus, the argument of \(\frac{1+i}{1-i}\) is: \[ \frac{\pi}{2} \] The correct option is (iii) \(\frac{\pi}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

The argument of -I is: (i) pi (ii) -pi (iii) -(pi)/2 (iv) (pi)/2

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

If the middle term in the expansion of (1/x+xsinx)^(10) is equal to 7 7/8 , then the value of x is (i) 2npi+(pi)/6 (ii) npi+(pi)/6 (iii) npi+(-1)^(n)(pi)/6 (iv) npi+(-1)^(n)(pi)/3

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

Lt_(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)/(2) (iv) (2)/(pi)

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4

Express the following angle in degrees. (i) ((5pi)/(12))^(c) " " (ii) -((7pi)/(12))^(c) (iii) (1^(c))/(3) " " (iv) -(2pi^(c))/(9)

The radius of a sphere is 3 cm. Its total surface area will be : (1) 18pi cm^(2) (ii) 36 pi cm^(2) (iii) 72pi cm^(2) (iv) 108 pi cm^(2)

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these

The value of "cot"(pi/(4)+theta)."cot"(pi/(4)-theta) is (i) -1 (ii) 0 (iii) 1 (iv) not defined