Home
Class 11
MATHS
If (1+2i) (2+3i)(3+4i)=x+iy,x,y in R th...

If `(1+2i) (2+3i)(3+4i)=x+iy,x,y in R ` then `x^(2)+y^(2)` is

A

1450

B

1625

C

1575

D

1725

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the product of the complex numbers \((1 + 2i)\), \((2 + 3i)\), and \((3 + 4i)\) and find \(x^2 + y^2\) where \(x + iy\) is the result of the multiplication. ### Step-by-Step Solution: 1. **Multiply the first two complex numbers:** \[ (2 + 3i)(3 + 4i) \] Using the distributive property (FOIL method): \[ = 2 \cdot 3 + 2 \cdot 4i + 3i \cdot 3 + 3i \cdot 4i \] \[ = 6 + 8i + 9i + 12i^2 \] Since \(i^2 = -1\): \[ = 6 + 17i - 12 = -6 + 17i \] 2. **Now multiply the result with the third complex number:** \[ (1 + 2i)(-6 + 17i) \] Again using the distributive property: \[ = 1 \cdot -6 + 1 \cdot 17i + 2i \cdot -6 + 2i \cdot 17i \] \[ = -6 + 17i - 12i + 34i^2 \] Replacing \(i^2\) with \(-1\): \[ = -6 + 5i - 34 = -40 + 5i \] 3. **Identify \(x\) and \(y\):** From the expression \(-40 + 5i\), we can see: \[ x = -40 \quad \text{and} \quad y = 5 \] 4. **Calculate \(x^2 + y^2\):** \[ x^2 + y^2 = (-40)^2 + 5^2 \] \[ = 1600 + 25 = 1625 \] ### Final Answer: Thus, the value of \(x^2 + y^2\) is \(1625\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If ( 1+i) (1+ 2i) (1+ 3i) …(1 +ni) = x+ iy, then 2,5,10 ….( 1+n^(2)) = x^(k) +y^(k) The value of k is :

If (-2-(1)/(3)i)^(3)= (x+iy)/(27),xy, in R then y-x equals

If = (a^(2) + 1)^(2)/(2a-i)=x+iy," then when is the value of " x^(2)+y^(2) ?

If (a^(2) + 1)^(2)/(2a-i)=x+iy," then when is the value of " x^(2)+y^(2) ?

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

Given that (1 + i) (1 + 2i) (1 + 3i)…(1 + ni)= x+ iy , show that 2.5.10…(1 + n^(2))= x^(2) + y^(2)

If x+i y=(1+i)(1+2i)(1+3i),\ t h e n\ x^2+y^2 is: (a) . 0 (b) . 1 (c) . 100 (d) . none of these

If ((a^2+1)/(2a-i))^2=x+i y , find the value of x^2+y^2dot

If 3x + y i= x + 2y , then 2x - y =

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))