Home
Class 11
MATHS
The polar form of sin 75^(@)+i cos 75^(@...

The polar form of sin `75^(@)+i cos 75^(@)` is

A

(a) sin `75^(@)+icos 75^(@)`

B

(b) `sin 15^(@)+icos 15^(@)`

C

(c) `cos15^(@)+isin 15^(@)`

D

(d) `cos 75^(@)+isin75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the polar form of \( \sin 75^\circ + i \cos 75^\circ \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ z = \sin 75^\circ + i \cos 75^\circ \] ### Step 2: Use co-function identities We know from trigonometric identities that: \[ \sin(90^\circ - \theta) = \cos \theta \quad \text{and} \quad \cos(90^\circ - \theta) = \sin \theta \] Using these identities, we can rewrite \( \sin 75^\circ \) and \( \cos 75^\circ \): \[ \sin 75^\circ = \cos(90^\circ - 75^\circ) = \cos 15^\circ \] \[ \cos 75^\circ = \sin(90^\circ - 75^\circ) = \sin 15^\circ \] ### Step 3: Substitute back into the expression Now substituting these values back into our expression for \( z \): \[ z = \cos 15^\circ + i \sin 15^\circ \] ### Step 4: Identify the polar form The expression \( \cos 15^\circ + i \sin 15^\circ \) is in the form of \( r(\cos \theta + i \sin \theta) \) where \( r = 1 \) and \( \theta = 15^\circ \). Therefore, the polar form is: \[ z = 1 \cdot \left( \cos 15^\circ + i \sin 15^\circ \right) \] ### Conclusion Thus, the polar form of \( \sin 75^\circ + i \cos 75^\circ \) is: \[ \cos 15^\circ + i \sin 15^\circ \] The correct answer is option **C: \( \cos 15^\circ + i \sin 15^\circ \)**. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

The polar form of 1+i sqrt(3) is

Value of tan 75^(@) + cot 75^(@) = ?

The polar form of (i^(25))^3 is a. cos(pi/2)+isin(pi/2) b. cospi+i\ sinpi c. cospi-isinpi d. cos(pi/2)-\ i sin(pi/2)

The value of 2 sin 15^(@).cos75^(@)

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

Find the value of sin 75^(@) .

Find the value of sin 75^(@) sin 15 ^(@).

Find the values of sin75^(@) .

Find the modulus and argument of the following complex number and hence express them in the polar form: sin 120^@-i\ cos 120^@

The value of "tan"75^(@)-"cot"75^(@) is equal to