Home
Class 11
MATHS
The modulus of ((1+2i)(3-4i))/((4+3i)(2-...

The modulus of `((1+2i)(3-4i))/((4+3i)(2-3i))`is

A

`sqrt((5)/(13))`

B

`sqrt((13)/(5))`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the expression \(\frac{(1+2i)(3-4i)}{(4+3i)(2-3i)}\), we can follow these steps: ### Step 1: Identify the components Let: - \( z_1 = (1 + 2i)(3 - 4i) \) - \( z_2 = (4 + 3i)(2 - 3i) \) ### Step 2: Calculate the modulus of \( z_1 \) The modulus of a complex number \( a + bi \) is given by \( |z| = \sqrt{a^2 + b^2} \). First, we calculate \( z_1 \): \[ z_1 = (1 + 2i)(3 - 4i) = 1 \cdot 3 + 1 \cdot (-4i) + 2i \cdot 3 + 2i \cdot (-4i) \] \[ = 3 - 4i + 6i - 8(-1) = 3 - 4i + 6i + 8 = 11 + 2i \] Now, calculate the modulus of \( z_1 \): \[ |z_1| = |11 + 2i| = \sqrt{11^2 + 2^2} = \sqrt{121 + 4} = \sqrt{125} = 5\sqrt{5} \] ### Step 3: Calculate the modulus of \( z_2 \) Now, we calculate \( z_2 \): \[ z_2 = (4 + 3i)(2 - 3i) = 4 \cdot 2 + 4 \cdot (-3i) + 3i \cdot 2 + 3i \cdot (-3i) \] \[ = 8 - 12i + 6i - 9(-1) = 8 - 12i + 6i + 9 = 17 - 6i \] Now, calculate the modulus of \( z_2 \): \[ |z_2| = |17 - 6i| = \sqrt{17^2 + (-6)^2} = \sqrt{289 + 36} = \sqrt{325} = 5\sqrt{13} \] ### Step 4: Calculate the modulus of the quotient Now we find the modulus of the quotient: \[ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{5\sqrt{5}}{5\sqrt{13}} = \frac{\sqrt{5}}{\sqrt{13}} = \sqrt{\frac{5}{13}} \] ### Final Answer Thus, the modulus of \(\frac{(1+2i)(3-4i)}{(4+3i)(2-3i)}\) is: \[ \sqrt{\frac{5}{13}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

The modulus of (1+i)(3+4i)=

Find the modulus of ((3+2i)^(2))/(4-3i)

The modulus of ((2+3i)^(2))/(2+i) is

Find the modulus of the following using the property of modulus ((2-3i)(4+5i))/((1-4i)(2-i))

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find the modulus of (2 -3i)/( 4+i)

The modulus of i^(25)+(i+2)^(3) is

Find modulus of (i) (2+4i)/(2-6i)

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

Find (2+4i)(3-2i)+(-3i)(5i)