Home
Class 11
MATHS
If a +ib = ((x+i)^(2))/(2x-1) then a^(2)...

If a +ib = `((x+i)^(2))/(2x-1)` then `a^(2)+b^(2)` is equal to

A

`((x+1)^(4))/(4x^(2)-1)`

B

`((x^2+1)^(2))/(2x-1)^2`

C

`((x+1)^(4))/(4x^(2)+1)`

D

`((x+1)^(2))/(4x^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a + ib = \frac{(x + i)^2}{2x - 1} \) and we need to find \( a^2 + b^2 \), we can follow these steps: ### Step 1: Expand the numerator We start with the expression: \[ a + ib = \frac{(x + i)^2}{2x - 1} \] Now, we expand \( (x + i)^2 \): \[ (x + i)^2 = x^2 + 2xi + i^2 \] Since \( i^2 = -1 \), we can write: \[ (x + i)^2 = x^2 + 2xi - 1 = x^2 - 1 + 2xi \] ### Step 2: Substitute back into the equation Now substitute the expanded form back into the equation: \[ a + ib = \frac{x^2 - 1 + 2xi}{2x - 1} \] ### Step 3: Separate real and imaginary parts We can separate the real and imaginary parts: \[ a = \frac{x^2 - 1}{2x - 1}, \quad b = \frac{2x}{2x - 1} \] ### Step 4: Find \( a^2 + b^2 \) Now we need to compute \( a^2 + b^2 \): \[ a^2 + b^2 = \left(\frac{x^2 - 1}{2x - 1}\right)^2 + \left(\frac{2x}{2x - 1}\right)^2 \] The common denominator is \( (2x - 1)^2 \), so we can write: \[ a^2 + b^2 = \frac{(x^2 - 1)^2 + (2x)^2}{(2x - 1)^2} \] ### Step 5: Expand the numerator Now we expand the numerator: \[ (x^2 - 1)^2 = x^4 - 2x^2 + 1 \] \[ (2x)^2 = 4x^2 \] Thus, we have: \[ a^2 + b^2 = \frac{x^4 - 2x^2 + 1 + 4x^2}{(2x - 1)^2} \] Combine like terms: \[ = \frac{x^4 + 2x^2 + 1}{(2x - 1)^2} \] ### Step 6: Recognize the perfect square Notice that the numerator can be factored: \[ x^4 + 2x^2 + 1 = (x^2 + 1)^2 \] Thus, we can write: \[ a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x - 1)^2} \] ### Final Result Therefore, the final expression for \( a^2 + b^2 \) is: \[ a^2 + b^2 = \left(\frac{x^2 + 1}{2x - 1}\right)^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

If a+bi= ((x+i)^(2))/(2x^(2)+1) , prove that a^(2) + b^(2)= ((x^(2) + 1)^(2))/((2x^(2) + 1)^(2))

If cos theta =1/2 (x+1/x ) , then 1/2(x^(2) +1/(x^(2))) is equal to :

If ((a^2+1)^2)/(2a-i)=x+i y , then x^2+y^2 is equal to a. ((a^2+1)^4)/(4a^2+1) b. ((a+1)^2)/(4a^2+1) c. ((a^2-1)^2)/((4a^2-1)^2) d. none of these

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If lim_(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2 , then (a,b) is equal to

If a + i b =((x+i)^2)/(2x^2+1), prove that a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to