Home
Class 11
MATHS
A real value of of x satisfies the equat...

A real value of of x satisfies the equation `(3-4ix)/(3+4ix)= alpha-ibeta(alpha,beta in R) ` if `alpha^(2)+beta^(2))` =

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3 - 4ix}{3 + 4ix} = \alpha - i\beta\) where \(\alpha\) and \(\beta\) are real numbers, we will follow these steps: ### Step 1: Multiply by the Conjugate Multiply both the numerator and denominator by the conjugate of the denominator: \[ \frac{(3 - 4ix)(3 - 4ix)}{(3 + 4ix)(3 - 4ix)} \] ### Step 2: Simplify the Denominator The denominator simplifies using the difference of squares: \[ (3 + 4ix)(3 - 4ix) = 3^2 - (4ix)^2 = 9 - 16(-1)x^2 = 9 + 16x^2 \] ### Step 3: Simplify the Numerator Now simplify the numerator: \[ (3 - 4ix)(3 - 4ix) = (3 - 4ix)^2 = 9 - 24ix - 16(-1)x^2 = 9 - 24ix + 16x^2 \] ### Step 4: Combine the Results Now we can write the equation as: \[ \frac{9 + 16x^2 - 24ix}{9 + 16x^2} = \alpha - i\beta \] ### Step 5: Separate Real and Imaginary Parts From the above equation, we can equate the real and imaginary parts: 1. Real part: \(\alpha = \frac{9 + 16x^2}{9 + 16x^2}\) 2. Imaginary part: \(-\beta = \frac{-24x}{9 + 16x^2}\) Thus, we have: \[ \alpha = 1 \quad \text{and} \quad \beta = \frac{24x}{9 + 16x^2} \] ### Step 6: Calculate \(\alpha^2 + \beta^2\) Now we need to calculate \(\alpha^2 + \beta^2\): \[ \alpha^2 + \beta^2 = 1^2 + \left(\frac{24x}{9 + 16x^2}\right)^2 \] ### Step 7: Simplify \(\beta^2\) Calculating \(\beta^2\): \[ \beta^2 = \frac{576x^2}{(9 + 16x^2)^2} \] ### Step 8: Combine \(\alpha^2 + \beta^2\) Now combine: \[ \alpha^2 + \beta^2 = 1 + \frac{576x^2}{(9 + 16x^2)^2} \] ### Step 9: Find a Common Denominator To combine these, we can express 1 as: \[ \alpha^2 + \beta^2 = \frac{(9 + 16x^2)^2 + 576x^2}{(9 + 16x^2)^2} \] ### Step 10: Expand the Numerator Expanding the numerator: \[ (9 + 16x^2)^2 = 81 + 288x^2 + 256x^4 \] Thus: \[ \alpha^2 + \beta^2 = \frac{81 + 288x^2 + 256x^4 + 576x^2}{(9 + 16x^2)^2} = \frac{81 + 864x^2 + 256x^4}{(9 + 16x^2)^2} \] ### Step 11: Evaluate the Expression Notice that the numerator simplifies to: \[ 81 + 864x^2 + 256x^4 = (9 + 16x^2)^2 \] Thus: \[ \alpha^2 + \beta^2 = \frac{(9 + 16x^2)^2}{(9 + 16x^2)^2} = 1 \] ### Conclusion Therefore, the value of \(\alpha^2 + \beta^2\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

A real value of x satisfies the equation (3-4ix)/(3+4ix)=alpha-ibeta(alpha,beta in R) , if alpha^2+beta^2=

If alpha and beta are the roots of the equation x^(2)+x+c=0 such that alpha+beta, alpha^(2)+beta^(2) and alpha^(3)+beta^(3) are in arithmetic progression, then c is equal to

Given alpha and beta are the roots of the quadratic equation x^(2)-4x+k=0(kne0). If alpha beta, alpha beta^(2)+alpha^(2)beta and alpha^(3)+beta^(3) are in geometric progression, then the value of k is equal to

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha,beta are the roots of the equation x^(2)+px+q=0 , find the value of (a) alpha^(3)beta+alphabeta^(3) (b) alpha^(4)+alpha^(2)beta^(2)+beta^(4) .

Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisfy the equatin x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, then alpha + beta =

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is