Home
Class 11
MATHS
The real vaule of theta for which the ex...

The real vaule of `theta` for which the expression `(1+icostheta)/(1-2icos theta)` is a purely imaginary number is

A

`npi pm (pi)/(6)`

B

`npi pm (pi)/(3)`

C

`(2n+1) (pi)/(2)`

D

` npi pm (pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the real value of \( \theta \) for which the expression \[ \frac{1 + i \cos \theta}{1 - 2 i \cos \theta} \] is purely imaginary, we will follow these steps: ### Step 1: Define the expression Let \[ z = \frac{1 + i \cos \theta}{1 - 2 i \cos \theta} \] ### Step 2: Multiply numerator and denominator by the conjugate of the denominator To simplify \( z \), we multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 1 + 2 i \cos \theta \): \[ z = \frac{(1 + i \cos \theta)(1 + 2 i \cos \theta)}{(1 - 2 i \cos \theta)(1 + 2 i \cos \theta)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 - 2 i \cos \theta)(1 + 2 i \cos \theta) = 1^2 - (2 i \cos \theta)^2 = 1 - 4(-\cos^2 \theta) = 1 + 4 \cos^2 \theta \] ### Step 4: Simplify the numerator Now, simplify the numerator: \[ (1 + i \cos \theta)(1 + 2 i \cos \theta) = 1 + 2 i \cos \theta + i \cos \theta + 2 i^2 \cos^2 \theta = 1 + 3 i \cos \theta - 2 \cos^2 \theta \] ### Step 5: Combine the results Now we can write \( z \) as: \[ z = \frac{(1 - 2 \cos^2 \theta) + 3 i \cos \theta}{1 + 4 \cos^2 \theta} \] ### Step 6: Separate real and imaginary parts This gives us: \[ z = \frac{1 - 2 \cos^2 \theta}{1 + 4 \cos^2 \theta} + i \frac{3 \cos \theta}{1 + 4 \cos^2 \theta} \] ### Step 7: Set the real part to zero For \( z \) to be purely imaginary, the real part must be zero: \[ \frac{1 - 2 \cos^2 \theta}{1 + 4 \cos^2 \theta} = 0 \] This implies: \[ 1 - 2 \cos^2 \theta = 0 \] ### Step 8: Solve for \( \cos^2 \theta \) Solving for \( \cos^2 \theta \): \[ 2 \cos^2 \theta = 1 \implies \cos^2 \theta = \frac{1}{2} \] ### Step 9: Find \( \cos \theta \) Taking the square root: \[ \cos \theta = \pm \frac{1}{\sqrt{2}} = \pm \cos \frac{\pi}{4} \] ### Step 10: Determine \( \theta \) Thus, the general solutions for \( \theta \) are: \[ \theta = n\pi \pm \frac{\pi}{4}, \quad n \in \mathbb{Z} \] ### Conclusion The values of \( \theta \) for which the expression is purely imaginary are given by: \[ \theta = n\pi \pm \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

The real value of alpha for which the expression (1- isin alpha)/(1+2i sinalpha) is purely real is

The real value of alpha for which the expression (1-isinalpha)/(1+2isinalpha) is purely real is

Find the real values of theta for which the complex number (1+i costheta)/(1-2i costheta) is purely real.

Find real value of theta for which (3+2i sin theta)/(1-2i sin theta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) real

Find real theta such that (3+2i\ sintheta)/(1-2i\ sintheta) is purely real.