Home
Class 11
MATHS
The amplitude of (-2)/(1+isqrt(3)) is...

The amplitude of `(-2)/(1+isqrt(3))` is

A

`(pi)/(4)`

B

`(pi)/(3)`

C

`(2pi)/(3)`

D

`-(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the amplitude of the complex number \(-\frac{2}{1 + i\sqrt{3}}\), we will follow these steps: ### Step 1: Rewrite the Complex Number Let \( z = -\frac{2}{1 + i\sqrt{3}} \). ### Step 2: Multiply by the Conjugate To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ z = -\frac{2(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ### Step 3: Simplify the Denominator Using the formula \( (a + b)(a - b) = a^2 - b^2 \): \[ (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 4: Simplify the Numerator Now, simplify the numerator: \[ -2(1 - i\sqrt{3}) = -2 + 2i\sqrt{3} \] ### Step 5: Combine the Results Now we can write \( z \): \[ z = \frac{-2 + 2i\sqrt{3}}{4} = -\frac{1}{2} + \frac{i\sqrt{3}}{2} \] ### Step 6: Identify Real and Imaginary Parts From the expression \( z = -\frac{1}{2} + \frac{i\sqrt{3}}{2} \), we identify: - Real part \( a = -\frac{1}{2} \) - Imaginary part \( b = \frac{\sqrt{3}}{2} \) ### Step 7: Calculate the Amplitude The amplitude (or argument) of a complex number is given by: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] Substituting the values: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) \] ### Step 8: Determine the Angle The angle \(\tan^{-1}(-\sqrt{3})\) corresponds to an angle in the second quadrant since the real part is negative and the imaginary part is positive. The reference angle for \(\tan^{-1}(\sqrt{3})\) is \(\frac{\pi}{3}\), thus: \[ \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] ### Final Answer Thus, the amplitude of \( z \) is: \[ \text{Amplitude} = \frac{2\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

The amplitude of (1)/(i) is

The amplitude of (1+isqrt(3))/(sqrt(3)+i) is a. pi/3 b. -pi/3 c. pi/6 d. -pi/6

Find the modulus and amplitude of (-1)/(2)+ (sqrt3)/(2)i

Write the amplitude of (1)/(i) .

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Find the modulus and amplitude of (2+i)/(4i+(1+i)^(2)) .

The modulus and amplitude of (1+2i)/(1-(1-i)^(2)) are

Find the value of : (1+ isqrt(3))^(2) + (1-isqrt(3))^(2)